Pytorch数据读取之Dataset和DataLoader知识总结

 更新时间:2021年05月23日 17:19:28   作者:群星闪耀  
Dataset和DataLoader都是Pytorch里面读取数据的工具.现在对这两种工具做一个概括和总结,对正在学习Pytorch的小伙伴们很有帮助,需要的朋友可以参考下

一、前言

确保安装

  • scikit-image
  • numpy

二、Dataset

一个例子:

# 导入需要的包
import torch
import torch.utils.data.dataset as Dataset
import numpy as np
 
# 编造数据
Data = np.asarray([[1, 2], [3, 4],[5, 6], [7, 8]])
Label = np.asarray([[0], [1], [0], [2]])
# 数据[1,2],对应的标签是[0],数据[3,4],对应的标签是[1]
 
 
#创建子类
class subDataset(Dataset.Dataset):
    #初始化,定义数据内容和标签
    def __init__(self, Data, Label):
        self.Data = Data
        self.Label = Label
    #返回数据集大小
    def __len__(self):
        return len(self.Data)
    #得到数据内容和标签
    def __getitem__(self, index):
        data = torch.Tensor(self.Data[index])
        label = torch.IntTensor(self.Label[index])
        return data, label
 
# 主函数
if __name__ == '__main__':
    dataset = subDataset(Data, Label)
    print(dataset)
    print('dataset大小为:', dataset.__len__())
    print(dataset.__getitem__(0))
    print(dataset[0])

 输出的结果

我们有了对Dataset的一个整体的把握,再来分析里面的细节:

#创建子类
class subDataset(Dataset.Dataset):

创建子类时,继承的时Dataset.Dataset,不是一个Dataset。因为Dataset是module模块,不是class类,所以需要调用module里的class才行,因此是Dataset.Dataset!

lengetitem这两个函数,前者给出数据集的大小**,后者是用于查找数据和标签。是最重要的两个函数,我们后续如果要对数据做一些操作基本上都是再这两个函数的基础上进行。

三、DatasetLoader

DataLoader(dataset,
           batch_size=1,
           shuffle=False,
           sampler=None,
           batch_sampler=None,
           num_works=0,
           clollate_fn=None,
           pin_memory=False,
           drop_last=False,
           timeout=0,
           worker_init_fn=None,
           multiprocessing_context=None)

功能:构建可迭代的数据装载器;
dataset:Dataset类,决定数据从哪里读取及如何读取;数据集的路径
batchsize:批大小;
num_works:是否多进程读取数据;只对于CPU
shuffle:每个epoch是否打乱;
drop_last:当样本数不能被batchsize整除时,是否舍弃最后一批数据;
Epoch:所有训练样本都已输入到模型中,称为一个Epoch;
Iteration:一批样本输入到模型中,称之为一个Iteration;
Batchsize:批大小,决定一个Epoch中有多少个Iteration;

还是举一个实例:

import torch
import torch.utils.data.dataset as Dataset
import torch.utils.data.dataloader as DataLoader
import numpy as np
 
Data = np.asarray([[1, 2], [3, 4],[5, 6], [7, 8]])
Label = np.asarray([[0], [1], [0], [2]])
#创建子类
class subDataset(Dataset.Dataset):
    #初始化,定义数据内容和标签
    def __init__(self, Data, Label):
        self.Data = Data
        self.Label = Label
    #返回数据集大小
    def __len__(self):
        return len(self.Data)
    #得到数据内容和标签
    def __getitem__(self, index):
        data = torch.Tensor(self.Data[index])
        label = torch.IntTensor(self.Label[index])
        return data, label
 
if __name__ == '__main__':
    dataset = subDataset(Data, Label)
    print(dataset)
    print('dataset大小为:', dataset.__len__())
    print(dataset.__getitem__(0))
    print(dataset[0])
 
    #创建DataLoader迭代器,相当于我们要先定义好前面说的Dataset,然后再用Dataloader来对数据进行一些操作,比如是否需要打乱,则shuffle=True,是否需要多个进程读取数据num_workers=4,就是四个进程
 
    dataloader = DataLoader.DataLoader(dataset,batch_size= 2, shuffle = False, num_workers= 4)
    for i, item in enumerate(dataloader): #可以用enumerate来提取出里面的数据
        print('i:', i)
        data, label = item #数据是一个元组
        print('data:', data)
        print('label:', label)

四、将Dataset数据和标签放在GPU上(代码执行顺序出错则会有bug)

这部分可以直接去看博客:Dataset和DataLoader

总结下来时有两种方法解决

1.如果在创建Dataset的类时,定义__getitem__方法的时候,将数据转变为GPU类型。则需要将Dataloader里面的参数num_workers设置为0,因为这个参数是对于CPU而言的。如果数据改成了GPU,则只能单进程。如果是在Dataloader的部分,先多个子进程读取,再转变为GPU,则num_wokers不用修改。就是上述__getitem__部分的代码,移到Dataloader部分。

2.不过一般来讲,数据集和标签不会像我们上述编辑的那么简单。一般再kaggle上的标签都是存在CSV这种文件中。需要pandas的配合。

这个进阶可以看:WRITING CUSTOM DATASETS, DATALOADERS AND TRANSFORMS,他是用人脸图片作为数据和人脸特征点作为标签。

到此这篇关于Pytorch数据读取之Dataset和DataLoader知识总结的文章就介绍到这了,更多相关详解Dataset和DataLoader内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python装饰器实现几类验证功能做法实例

    Python装饰器实现几类验证功能做法实例

    下面小编就为大家带来一篇Python装饰器实现几类验证功能做法实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-05-05
  • python 中的@运算符使用

    python 中的@运算符使用

    这篇文章主要介绍了python 中的@运算符使用,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-05-05
  • Python使用defaultdict解决字典默认值

    Python使用defaultdict解决字典默认值

    本文主要介绍了Python使用defaultdict解决字典默认值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-04-04
  • Python 字符串处理特殊空格\xc2\xa0\t\n Non-breaking space

    Python 字符串处理特殊空格\xc2\xa0\t\n Non-breaking space

    今天遇到一个问题,使用python的find函数寻找字符串中的第一个空格时没有找到正确的位置,下面是解决方法,需要的朋友可以参考下
    2020-02-02
  • 基于Numpy.convolve使用Python实现滑动平均滤波的思路详解

    基于Numpy.convolve使用Python实现滑动平均滤波的思路详解

    这篇文章主要介绍了Python极简实现滑动平均滤波(基于Numpy.convolve)的相关知识,非常不错,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-05-05
  • Python+Pygame实战之泡泡游戏的实现

    Python+Pygame实战之泡泡游戏的实现

    这篇文章主要为大家介绍了如何利用Python中的Pygame模块实现泡泡游戏,文中的示例代码讲解详细,对我们学习Python游戏开发有一定帮助,需要的可以参考一下
    2022-07-07
  • python针对mysql数据库的连接、查询、更新、删除操作示例

    python针对mysql数据库的连接、查询、更新、删除操作示例

    这篇文章主要介绍了python针对mysql数据库的连接、查询、更新、删除操作,结合实例形式详细分析了Python操作mysql数据库的连接与增删改查相关实现技巧,需要的朋友可以参考下
    2019-09-09
  • 浅析Python迭代器的高级用法

    浅析Python迭代器的高级用法

    这篇文章主要介绍了Python迭代器的高级用法,在实际场景当中非常实用,可以帮助我们大大简化代码的复杂度。感兴趣的朋友可以了解下
    2020-07-07
  • Python Json数据文件操作原理解析

    Python Json数据文件操作原理解析

    这篇文章主要介绍了Python Json数据文件操作原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-05-05
  • Python实现一键抠图的示例代码

    Python实现一键抠图的示例代码

    在日常的工作和生活中,我们经常会遇到需要抠图的场景,即便是只有一张图片需要抠,也会抠得我们不耐烦。本文将为大家分享一个Python实现一键抠图的示例代码,需要的可以参考一下
    2022-08-08

最新评论