Python深度学习之使用Albumentations对图像做增强

 更新时间:2021年05月27日 14:17:36   作者:AI浩  
诸如RandomCrop和CenterCrop之类的某些增强功能可能会变换图像,使其不包含所有原始边界框. 本示例说明如何使用名为RandomSizedBBoxSafeCrop的变换来裁剪图像的一部分,但保留原始图像的所有边界框,需要的朋友可以参考下

一、导入所需的库

import random
 
import cv2
from matplotlib import pyplot as plt
 
import albumentations as A

二、定义可视化函数显示图像上的边界框和类标签

可视化函数参考https://github.com/facebookresearch/Detectron/blob/master/detectron/utils/vis.py

BOX_COLOR = (255, 0, 0) # Red
TEXT_COLOR = (255, 255, 255) # White
 
 
def visualize_bbox(img, bbox, class_name, color=BOX_COLOR, thickness=2):
    """Visualizes a single bounding box on the image"""
    x_min, y_min, w, h = bbox
    x_min, x_max, y_min, y_max = int(x_min), int(x_min + w), int(y_min), int(y_min + h)
 
    cv2.rectangle(img, (x_min, y_min), (x_max, y_max), color=color, thickness=thickness)
 
    ((text_width, text_height), _) = cv2.getTextSize(class_name, cv2.FONT_HERSHEY_SIMPLEX, 0.35, 1)    
    cv2.rectangle(img, (x_min, y_min - int(1.3 * text_height)), (x_min + text_width, y_min), BOX_COLOR, -1)
    cv2.putText(
        img,
        text=class_name,
        org=(x_min, y_min - int(0.3 * text_height)),
        fontFace=cv2.FONT_HERSHEY_SIMPLEX,
        fontScale=0.35, 
        color=TEXT_COLOR, 
        lineType=cv2.LINE_AA,
    )
    return img
 
 
def visualize(image, bboxes, category_ids, category_id_to_name):
    img = image.copy()
    for bbox, category_id in zip(bboxes, category_ids):
        class_name = category_id_to_name[category_id]
        img = visualize_bbox(img, bbox, class_name)
    plt.figure(figsize=(12, 12))
    plt.axis('off')
    plt.imshow(img)

三、获取图像和标注

在此示例中,我们将使用来自COCO数据集的图像,该图像具有两个关联的边界框。 该映像位于http://cocodataset.org/#explore?id=386298

从磁盘加载图像

image = cv2.imread('images/000000386298.jpg')
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

用坐标和类标签定义两个边界框

这些边界框的坐标使用coco格式声明。 每个边界框使用四个值[x_min, y_min, width, height]进行描述。 有关边界框坐标的不同格式的详细说明,请参阅有关边界框的文档文章-https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/

bboxes = [[5.66, 138.95, 147.09, 164.88], [366.7, 80.84, 132.8, 181.84]]
category_ids = [17, 18]
 
# We will use the mapping from category_id to the class name
# to visualize the class label for the bounding box on the image
category_id_to_name = {17: 'cat', 18: 'dog'}

展示图像的边框

visualize(image, bboxes, category_ids, category_id_to_name)

四、使用RandomSizedBBoxSafeCrop保留原始图像中的所有边界框

RandomSizedBBoxSafeCrop crops a random part of the image. It ensures that the cropped part will contain all bounding boxes from the original image. Then the transform rescales the crop to height and width specified by the respective parameters. The erosion_rate parameter controls how much area of the original bounding box could be lost after cropping. erosion_rate = 0.2 means that the augmented bounding box's area could be up to 20% smaller than the area of the original bounding box.

RandomSizedBBoxSafeCrop裁剪图像的随机部分。 它确保裁剪的部分将包含原始图像的所有边界框。 然后,变换会将作物重新缩放为相应参数指定的高度和宽度。 erosion_rate参数控制裁剪后可能丢失原始边界框的面积。 frosting_rate = 0.2表示扩充后的边界框的面积可能比原始边界框的面积小20%。

五、定义增强管道

transform = A.Compose(
    [A.RandomSizedBBoxSafeCrop(width=448, height=336, erosion_rate=0.2)],
    bbox_params=A.BboxParams(format='coco', label_fields=['category_ids']),
)

六、输入用于增强的图像和边框

我们固定随机种子是为了可视化目的,因此增强将始终产生相同的结果。 在真实的计算机视觉管道中,您不应该在对图像应用转换之前固定随机种子,因为在这种情况下,管道将始终输出相同的图像。 图像增强的目的是每次使用不同的变换。

random.seed(7)
transformed = transform(image=image, bboxes=bboxes, category_ids=category_ids)
visualize(
    transformed['image'],
    transformed['bboxes'],
    transformed['category_ids'],
    category_id_to_name,
)

七、其他不同随机种子的示例

random.seed(3)
transformed = transform(image=image, bboxes=bboxes, category_ids=category_ids)
visualize(
    transformed['image'],
    transformed['bboxes'],
    transformed['category_ids'],
    category_id_to_name,
)

random.seed(444)
transformed = transform(image=image, bboxes=bboxes, category_ids=category_ids)
visualize(
    transformed['image'],
    transformed['bboxes'],
    transformed['category_ids'],
    category_id_to_name,
)

到此这篇关于Python深度学习之使用Albumentations对目标检测任务做增强的文章就介绍到这了,更多相关用Albumentations对目标做增强内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python常见加密模块用法分析【MD5,sha,crypt模块】

    Python常见加密模块用法分析【MD5,sha,crypt模块】

    这篇文章主要介绍了Python常见加密模块用法,结合实例形式较为详细的分析了MD5,sha与crypt模块加密的相关实现方法与操作技巧,需要的朋友可以参考下
    2017-05-05
  • Python采集图片数据的实现示例

    Python采集图片数据的实现示例

    本文主要介绍了Python采集图片数据的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-04-04
  • python tkinter控件treeview的数据列表显示的实现示例

    python tkinter控件treeview的数据列表显示的实现示例

    本文主要介绍了python tkinter控件treeview的数据列表显示的实现示例,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-01-01
  • Python self用法详解

    Python self用法详解

    这篇文章主要介绍了Python self用法的相关资料,帮助大家更好的理解和学习python,感兴趣的朋友可以了解下
    2020-11-11
  • Pytorch BCELoss和BCEWithLogitsLoss的使用

    Pytorch BCELoss和BCEWithLogitsLoss的使用

    这篇文章主要介绍了Pytorch BCELoss和BCEWithLogitsLoss的使用详解,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-05-05
  • django实现同一个ip十分钟内只能注册一次的实例

    django实现同一个ip十分钟内只能注册一次的实例

    下面小编就为大家带来一篇django实现同一个ip十分钟内只能注册一次的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-11-11
  • 一文详解CNN 解决 Flowers 图像分类任务

    一文详解CNN 解决 Flowers 图像分类任务

    这篇文章主要为大家介绍了CNN 解决 Flowers 图像分类任务详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-03-03
  • 一文详解Python中多进程和进程池的使用方法

    一文详解Python中多进程和进程池的使用方法

    这篇文章将介绍Python中多进程和进程池的使用方法,并提供一些实用的案例供大家参考,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下
    2023-04-04
  • python绘图模块之利用turtle画图

    python绘图模块之利用turtle画图

    这篇文章主要给大家介绍了关于python模块教程之利用turtle画图的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-02-02
  • python实现简单反弹球游戏

    python实现简单反弹球游戏

    这篇文章主要为大家详细介绍了python实现简单反弹球游戏,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-04-04

最新评论