浅谈Pytorch 定义的网络结构层能否重复使用

 更新时间:2021年06月01日 14:19:16   作者:idotc  
这篇文章主要介绍了Pytorch定义的网络结构层能否重复使用的操作,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

前言:最近在构建网络的时候,有一些层参数一样,于是就没有定义新的层,直接重复使用了原来已经有的层,发现效果和模型大小都没有什么变化,心中产生了疑问:定义的网络结构层能否重复使用?因此接下来利用了一个小模型网络实验了一下。

一、网络结构一:(连续使用相同的层)

1、网络结构如下所示:

class Cnn(nn.Module):
    def __init__(self):
        super(Cnn, self).__init__()
        self.conv1 = nn.Sequential(
          nn.Conv2d(
            in_channels = 3,  #(, 64, 64, 3)
            out_channels = 16,
            kernel_size = 3,
            stride = 1,
            padding = 1
          ),   ##( , 64, 64, 16)
          nn.ReLU(),
          nn.MaxPool2d(kernel_size = 2)
        )  ##( , 32, 32, 16)
        self.conv2 = nn.Sequential(
          nn.Conv2d(16,32,3,1,1),
          nn.ReLU(),
          nn.MaxPool2d(2)
        )
        self.conv3 = nn.Sequential(
          nn.Conv2d(32,64,3,1,1),
          nn.ReLU(),
          nn.MaxPool2d(2)
        )
        self.conv4 = nn.Sequential(
          nn.Conv2d(64,64,3,1,1),
          nn.BatchNorm2d(64),
          nn.ReLU(),
        )
        self.out = nn.Linear(64*8*8, 6)
    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x = self.conv4(x)
        x = x.view(x.size(0),-1)
        out = self.out(x)
        return out

定义了一个卷积层conv4,接下来围绕着这个conv4做一些变化。打印一下网络结构:

和想象中的一样,其中

nn.BatchNorm2d # 对应上面的 module.conv4.1.*

激活层没有参数所以直接跳过

2、改变一下forward():

连续使用两个conv4层:

def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x = self.conv4(x)
        x = self.conv4(x)
        x = x.view(x.size(0),-1)
        out = self.out(x)
        return out

打印网络结构:

和1.1中的结构一样,conv4没有生效。

二、网络结构二:(间断使用相同的层)

网络结构多定义一个和conv4一样的层conv5,同时间断使用conv4:

    self.conv4 = nn.Sequential(
      nn.Conv2d(64,64,3,1,1),
      nn.BatchNorm2d(64),
      nn.ReLU(),
    )
    self.conv5 = nn.Sequential(
      nn.Conv2d(64,64,3,1,1),
      nn.BatchNorm2d(64),
      nn.ReLU(),
    )
    self.out = nn.Linear(64*8*8, 6)
def forward(self, x):
    x = self.conv1(x)
    x = self.conv2(x)
    x = self.conv3(x)
    x = self.conv4(x)
    x = self.conv5(x)
    x = self.conv4(x)
    x = x.view(x.size(0),-1)
    out = self.out(x)
    return out

打印网络结构:

果不其然,新定义的conv5有效,conv4还是没有生效。

本来以为,使用重复定义的层会像conv4.0,conv4.1,…这样下去,看样子是不能重复使用定义的层。

Pytorch_5.7 使用重复元素的网络--VGG

5.7.1 VGG块

VGG引入了Block的概念 作为模型的基础模块

import time
import torch
from torch import nn, optim
import pytorch_deep as pyd
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def vgg_block(num_convs, in_channels, out_channels):
    blk = []
    for i in range(num_convs):
        if i == 0:
            blk.append(nn.Conv2d(in_channels, out_channels,kernel_size=3, padding=1))
        else:
            blk.append(nn.Conv2d(out_channels, out_channels,kernel_size=3, padding=1))
        blk.append(nn.ReLU())
    blk.append(nn.MaxPool2d(kernel_size=2, stride=2)) # 这⾥会使宽⾼减半
    return nn.Sequential(*blk)

实现VGG_11网络

8个卷积层和3个全连接

def vgg_11(conv_arch, fc_features, fc_hidden_units=4096):
    net = nn.Sequential()
    # 卷积层部分
    for i, (num_convs, in_channels, out_channels) in enumerate(conv_arch):
        # 每经过⼀个vgg_block都会使宽⾼减半
        net.add_module("vgg_block_" + str(i+1),vgg_block(num_convs, in_channels, out_channels))
    # 全连接层部分
    net.add_module("fc", nn.Sequential(
                    pyd.FlattenLayer(),
                    nn.Linear(fc_features,fc_hidden_units),
                    nn.ReLU(),
                    nn.Dropout(0.5),
                    nn.Linear(fc_hidden_units,fc_hidden_units),
                    nn.ReLU(),
                    nn.Dropout(0.5),
                    nn.Linear(fc_hidden_units, 10)
                    ))
    return net
ratio = 8
small_conv_arch = [(1, 1, 64//ratio), (1, 64//ratio, 128//ratio),(2, 128//ratio, 256//ratio),(2, 256//ratio, 512//ratio), (2, 512//ratio,512//ratio)]
fc_features = 512 * 7 * 7 # c *
fc_hidden_units = 4096 # 任意
net = vgg_11(small_conv_arch, fc_features // ratio, fc_hidden_units //ratio)
print(net)
Sequential(
  (vgg_block_1): Sequential(
    (0): Conv2d(1, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (vgg_block_2): Sequential(
    (0): Conv2d(8, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (vgg_block_3): Sequential(
    (0): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU()
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (vgg_block_4): Sequential(
    (0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU()
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (vgg_block_5): Sequential(
    (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU()
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (fc): Sequential(
    (0): FlattenLayer()
    (1): Linear(in_features=3136, out_features=512, bias=True)
    (2): ReLU()
    (3): Dropout(p=0.5)
    (4): Linear(in_features=512, out_features=512, bias=True)
    (5): ReLU()
    (6): Dropout(p=0.5)
    (7): Linear(in_features=512, out_features=10, bias=True)
  )
)

训练数据

batch_size = 32
# 如出现“out of memory”的报错信息,可减⼩batch_size或resize
train_iter, test_iter = pyd.load_data_fashion_mnist(batch_size,resize=224)
lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
pyd.train_ch5(net, train_iter, test_iter, batch_size, optimizer,device, num_epochs)
training on  cuda
epoch 1, loss 0.5166, train acc 0.810, test acc 0.872,time 57.6 sec
epoch 2, loss 0.1557, train acc 0.887, test acc 0.902,time 57.9 sec
epoch 3, loss 0.0916, train acc 0.900, test acc 0.907,time 57.7 sec
epoch 4, loss 0.0609, train acc 0.912, test acc 0.915,time 57.6 sec
epoch 5, loss 0.0449, train acc 0.919, test acc 0.914,time 57.4 sec

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • 解决tensorflow 释放图,删除变量问题

    解决tensorflow 释放图,删除变量问题

    这篇文章主要介绍了解决tensorflow 释放图,删除变量问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • Ruby使用eventmachine为HTTP服务器添加文件下载功能

    Ruby使用eventmachine为HTTP服务器添加文件下载功能

    这篇文章主要介绍了Ruby使用eventmachine为HTTP服务器添加文件下载功能的实例,同时作者也分享了Windows上eventmachine安装报错问题的解决方法,需要的朋友可以参考下
    2016-04-04
  • python清除字符串前后空格函数的方法

    python清除字符串前后空格函数的方法

    今天小编就为大家分享一篇python清除字符串前后空格函数的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-10-10
  • Python判断远程服务器上Excel文件是否被人打开的方法

    Python判断远程服务器上Excel文件是否被人打开的方法

    这篇文章主要介绍了Python如何判断远程服务器上Excel文件是否被人打开,本文通过图文并茂的形式给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-07-07
  • python算法表示概念扫盲教程

    python算法表示概念扫盲教程

    这篇文章主要为大家详细介绍了python算法表示概念扫盲教程,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-04-04
  • Django中自定义admin Xadmin的实现代码

    Django中自定义admin Xadmin的实现代码

    这篇文章主要介绍了Django中自定义admin---Xadmin的实现代码,本文通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值 ,需要的朋友可以参考下
    2019-08-08
  • 详解python中的三种命令行模块(sys.argv,argparse,click)

    详解python中的三种命令行模块(sys.argv,argparse,click)

    这篇文章主要介绍了python中的三种命令行模块(sys.argv,argparse,click)的相关资料,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下
    2020-12-12
  • python从Oracle读取数据生成图表

    python从Oracle读取数据生成图表

    这篇文章主要介绍了python如何从Oracle读取数据生成图表,帮助大家更好的利用python处理数据,感兴趣的朋友可以了解下
    2020-10-10
  • Anaconda安装以及修改环境默认位置图文教程

    Anaconda安装以及修改环境默认位置图文教程

    Anaconda是一个用于科学计算的Python发行版,支持Linux,Mac, Windows, 包含了众多流行的科学计算、数据分析的 Python 包,下面这篇文章主要给大家介绍了关于Anaconda安装以及修改环境默认位置的相关资料,需要的朋友可以参考下
    2023-04-04
  • python内置函数map/filter/reduce详解

    python内置函数map/filter/reduce详解

    在Python中,map(), filter(), 和 reduce() 是内置的高级函数(实际是class),用于处理可迭代对象(如列表、元组等)的元素,这篇文章主要介绍了python内置函数map/filter/reduce的相关知识,需要的朋友可以参考下
    2024-05-05

最新评论