Pytorch中Softmax与LogSigmoid的对比分析

 更新时间:2021年06月05日 15:03:13   作者:奥特曼丶毕健旗  
这篇文章主要介绍了Pytorch中Softmax与LogSigmoid的对比分析,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

Pytorch中Softmax与LogSigmoid的对比

torch.nn.Softmax

作用:

1、将Softmax函数应用于输入的n维Tensor,重新改变它们的规格,使n维输出张量的元素位于[0,1]范围内,并求和为1。

2、返回的Tensor与原Tensor大小相同,值在[0,1]之间。

3、不建议将其与NLLLoss一起使用,可以使用LogSoftmax代替之。

4、Softmax的公式:

在这里插入图片描述

参数:

维度,待使用softmax计算的维度。

例子:

# 随机初始化一个tensor
a = torch.randn(2, 3)
print(a) # 输出tensor
# 初始化一个Softmax计算对象,在输入tensor的第2个维度上进行此操作
m = nn.Softmax(dim=1)
# 将a进行softmax操作
output = m(a)
print(output) # 输出tensor

tensor([[ 0.5283,  0.3922, -0.0484],
        [-1.6257, -0.4775,  0.5645]])
tensor([[0.4108, 0.3585, 0.2307],
        [0.0764, 0.2408, 0.6828]])

可以看见的是,无论输入的tensor中的值为正或为负,输出的tensor中的值均为正值,且加和为1。

当m的参数dim=1时,输出的tensor将原tensor按照行进行softmax操作;当m的参数为dim=0时,输出的tensor将原tensor按照列进行softmax操作。

深度学习拓展:

一般来说,Softmax函数会用于分类问题上。例如,在VGG等深度神经网络中,图像经过一系列卷积、池化操作后,我们可以得到它的特征向量,为了进一步判断此图像中的物体属于哪个类别,我们会将该特征向量变为:类别数 * 各类别得分 的形式,为了将得分转换为概率值,我们会将该向量再经过一层Softmax处理。

torch.nn.LogSigmoid

公式:

在这里插入图片描述

函数图:

可以见得,函数值在[0, -]之间,输入值越大函数值距离0越近,在一定程度上解决了梯度消失问题。

例子:

a = [[ 0.5283,  0.3922, -0.0484],
    [-1.6257, -0.4775,  0.5645]]
a = torch.tensor(a)
lg = nn.LogSigmoid()
lgoutput = lg(a)
print(lgoutput)

tensor([[-0.4635, -0.5162, -0.7176],
        [-1.8053, -0.9601, -0.4502]])

二者比较:

import torch
import torch.nn as nn
# 设置a为 2*3  的tensor
a = [[ 0.5283,  0.3922, -0.0484],
    [-1.6257, -0.4775,  0.5645]]
a = torch.tensor(a)
print(a)
print('a.mean:', a.mean(1, True)) # 输出a的 行平均值

m = nn.Softmax(dim=1) # 定义Softmax函数,dim=1表示为按行计算
lg = nn.LogSigmoid() # 定义LogSigmoid函数

output = m(a)
print(output)
# 输出a经过Softmax的结果的行平均值
print('output.mean:', output.mean(1, True)) 

lg_output = lg(a)
print(lg_output)
# 输出a经过LogSigmoid的结果的行平均值
print('lgouput.mean:', lg_output.mean(1, True)) 

# 结果:
tensor([[ 0.5283,  0.3922, -0.0484],
        [-1.6257, -0.4775,  0.5645]])
a.mean: tensor(-0.1111)

tensor([[0.4108, 0.3585, 0.2307],
        [0.0764, 0.2408, 0.6828]])
output.mean: tensor([[0.3333], [0.3333]]) # 经过Softmax的结果的行平均值

tensor([[-0.4635, -0.5162, -0.7176],
        [-1.8053, -0.9601, -0.4502]])
lgouput.mean: tensor([[-0.5658], [-1.0719]]) # 经过LogSigmoid的结果的行平均值

由上可知,继续考虑分类问题,相同的数据,经过Softmax和LogSigmoid处理后,若取最大概率值对应类别作为分类结果,那么:

1、第一行数据经过Softmax后,会选择第一个类别;经过LogSigmoid后,会选择第一个。

2、第二行数据经过Softmax后,会选择第三个类别;经过LogSigmoid后,会选择第三个。

3、一般来说,二者在一定程度上区别不是很大,由于sigmoid函数存在梯度消失问题,所以被使用的场景不多。

4、但是在多分类问题上,可以尝试选择Sigmoid函数来作为分类函数,因为Softmax在处理多分类问题上,会更容易出现各项得分十分相近的情况。瓶颈值可以根据实际情况定。

nn.Softmax()与nn.LogSoftmax()

nn.Softmax()计算出来的值,其和为1,也就是输出的是概率分布,具体公式如下:

这保证输出值都大于0,在0,1范围内。

而nn.LogSoftmax()公式如下:

由于softmax输出都是0-1之间的,因此logsofmax输出的是小于0的数,

softmax求导:

logsofmax求导:

例子:

import torch.nn as nn
import torch
import numpy as np
layer1=nn.Softmax()
layer2=nn.LogSoftmax()
 
input=np.asarray([2,3])
input=Variable(torch.Tensor(input))
 
output1=layer1(input)
output2=layer2(input)
print('output1:',output1)
print('output2:',output2)

输出:

output1: Variable containing:
0.2689
0.7311
[torch.FloatTensor of size 2]

output2: Variable containing:
-1.3133
-0.3133
[torch.FloatTensor of size 2]

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • tornado+celery的简单使用详解

    tornado+celery的简单使用详解

    今天小编就为大家分享一篇tornado+celery的简单使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • Python爬虫实例扒取2345天气预报

    Python爬虫实例扒取2345天气预报

    本篇文章给大家详细分析了通过Python爬虫如何采集到2345的天气预报信息,有兴趣的朋友参考学习下吧。
    2018-03-03
  • Python numpy  数组的向量化运算操作方法

    Python numpy  数组的向量化运算操作方法

    这篇文章主要介绍了Python numpy数组的向量化运算操作方法,本文通过示例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2023-06-06
  • Pycharm配置anaconda环境图文教程

    Pycharm配置anaconda环境图文教程

    这篇文章主要介绍了Pycharm配置anaconda环境图文教程,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-11-11
  • python如何求解两数的最大公约数

    python如何求解两数的最大公约数

    这篇文章主要为大家详细介绍了python如何求解两数的最大公约数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-09-09
  • Python面向对象之反射/自省机制实例分析

    Python面向对象之反射/自省机制实例分析

    这篇文章主要介绍了Python面向对象之反射/自省机制,结合实例形式分析了Python面向对象程序设计中的反射/自省机制概念、原理及相关属性操作技巧,需要的朋友可以参考下
    2018-08-08
  • 能让你轻松的实现自然语言处理的5个Python库

    能让你轻松的实现自然语言处理的5个Python库

    今天教大家如何你轻松的实现自然语言预处理,仅仅需要5个python库,文中介绍的非常详细,对正在学习python的小伙伴们有很好的帮助,需要的朋友可以参考下
    2021-05-05
  • Python中GIL的使用详解

    Python中GIL的使用详解

    GIL的全称为Global Interpreter Lock,全局解释器锁。本篇文章详细的介绍了Python中GIL的使用,有需要了解Python中GIL用法的朋友可参考。希望此文章对各位有所帮助
    2018-10-10
  • python实现银联支付和支付宝支付接入

    python实现银联支付和支付宝支付接入

    这篇文章主要为大家详细介绍了python实现银联支付和支付宝支付的接入,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-05-05
  • 玩转python爬虫之爬取糗事百科段子

    玩转python爬虫之爬取糗事百科段子

    这篇文章主要介绍了python爬虫爬取糗事百科段子,详细介绍下,如何来抓取到糗事百科里面的指定内容,感兴趣的小伙伴们可以参考一下
    2016-02-02

最新评论