python通过opencv调用摄像头操作实例分析

 更新时间:2021年06月06日 14:15:43   作者:iUpoint  
在本篇文章里小编给大家整理的是一篇关于python通过opencv调用摄像头操作实例分析内容,有兴趣的朋友们可以学习下。

实例源码:

#pip3 install opencv-python
import cv2
from datetime import datetime
 
FILENAME = 'myvideo.avi'
WIDTH = 1280
HEIGHT = 720
FPS = 24.0
 
# 必须指定CAP_DSHOW(Direct Show)参数初始化摄像头,否则无法使用更高分辨率
cap = cv2.VideoCapture(0, cv2.CAP_DSHOW)
# 设置摄像头设备分辨率
cap.set(cv2.CAP_PROP_FRAME_WIDTH, WIDTH)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, HEIGHT)
# 设置摄像头设备帧率,如不指定,默认600
cap.set(cv2.CAP_PROP_FPS, 24)
# 建议使用XVID编码,图像质量和文件大小比较都兼顾的方案
fourcc = cv2.VideoWriter_fourcc(*'XVID')
 
out = cv2.VideoWriter(FILENAME, fourcc, FPS, (WIDTH, HEIGHT))
 
start_time = datetime.now()
 
while True:
    ret, frame = cap.read()
    if ret:
        out.write(frame)
        # 显示预览窗口
        cv2.imshow('Preview_Window', frame)
        # 录制5秒后停止
        if (datetime.now()-start_time).seconds == 5:
            cap.release()
            break
        # 监测到ESC按键也停止
        if cv2.waitKey(3) & 0xff == 27:
            cap.release()
            break
 
out.release()
cv2.destroyAllWindows()

打开摄像头后链接成功的操作:

# 1. 打开摄像头
import cv2
import numpy as np
  
def video_demo():
  capture = cv2.VideoCapture(0)#0为电脑内置摄像头
  while(True):
    ret, frame = capture.read()#摄像头读取,ret为是否成功打开摄像头,true,false。 frame为视频的每一帧图像
    frame = cv2.flip(frame, 1)#摄像头是和人对立的,将图像左右调换回来正常显示。
    cv2.imshow("video", frame)
    c = cv2.waitKey(50)
    if c == 27:
      break
video_demo()
cv2.destroyAllWindows()
 
 
#2. 打开摄像头并截图
import cv2
cap = cv2.VideoCapture(0, cv2.CAP_DSHOW) # 打开摄像头
  
while (1):
  # get a frame
  ret, frame = cap.read()
  frame = cv2.flip(frame, 1) # 摄像头是和人对立的,将图像左右调换回来正常显示
  # show a frame
  cv2.imshow("capture", frame) # 生成摄像头窗口
  
  if cv2.waitKey(1) & 0xFF == ord('q'): # 如果按下q 就截图保存并退出
    cv2.imwrite("test.png", frame) # 保存路径
    break
  
cap.release()
cv2.destroyAllWindows()
 
 
#3. 打开摄像头并定时截图
def video_demo():
  print('开始')
  cap = cv2.VideoCapture(0, cv2.CAP_DSHOW) # 电脑自身摄像头
  i = 0#定时装置初始值
  photoname = 1#文件名序号初始值
  
  while True:
    i = i + 1
    reg, frame = cap.read()
    frame = cv2.flip(frame, 1) # 图片左右调换
    cv2.imshow('window', frame)
  
    if i == 50: # 定时装置,定时截屏,可以修改。
  
      filename = str(photoname) + '.png' # filename为图像名字,将photoname作为编号命名保存的截图
      cv2.imwrite('C:/Users/Administrator/Desktop/m' + '\\' + filename, frame) # 截图 前面为放在桌面的路径 frame为此时的图像
      print(filename + '保存成功') # 打印保存成功
      i = 0 # 清零
  
      photoname = photoname + 1
      if photoname >= 20: # 最多截图20张 然后退出(如果调用photoname = 1 不用break为不断覆盖图片)
        # photoname = 1
        break
    if cv2.waitKey(1) & 0xff == ord('q'):
      break
  # 释放资源
  cap.release()
  
video_demo()
cv2.destroyAllWindows()

实例扩展:

使用OpenCV调用摄像头检测人脸并连续截图100张

#-*- coding: utf-8 -*-
# import 进openCV的库
import cv2

###调用电脑摄像头检测人脸并截图

def CatchPICFromVideo(window_name, camera_idx, catch_pic_num, path_name):
 cv2.namedWindow(window_name)

 #视频来源,可以来自一段已存好的视频,也可以直接来自USB摄像头
 cap = cv2.VideoCapture(camera_idx)

 #告诉OpenCV使用人脸识别分类器
 classfier = cv2.CascadeClassifier("haarcascade_frontalface_alt.xml")

 #识别出人脸后要画的边框的颜色,RGB格式, color是一个不可增删的数组
 color = (0, 255, 0)

 num = 0
 while cap.isOpened():
 ok, frame = cap.read() #读取一帧数据
 if not ok:
  break

 grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) #将当前桢图像转换成灰度图像

 #人脸检测,1.2和2分别为图片缩放比例和需要检测的有效点数
 faceRects = classfier.detectMultiScale(grey, scaleFactor = 1.2, minNeighbors = 3, minSize = (32, 32))
 if len(faceRects) > 0:  #大于0则检测到人脸
  for faceRect in faceRects: #单独框出每一张人脸
  x, y, w, h = faceRect

  #将当前帧保存为图片
  img_name = "%s/%d.jpg" % (path_name, num)
  #print(img_name)
  image = frame[y - 10: y + h + 10, x - 10: x + w + 10]
  cv2.imwrite(img_name, image,[int(cv2.IMWRITE_PNG_COMPRESSION), 9])

  num += 1
  if num > (catch_pic_num): #如果超过指定最大保存数量退出循环
   break

  #画出矩形框
  cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10), color, 2)

  #显示当前捕捉到了多少人脸图片了,这样站在那里被拍摄时心里有个数,不用两眼一抹黑傻等着
  font = cv2.FONT_HERSHEY_SIMPLEX
  cv2.putText(frame,'num:%d/100' % (num),(x + 30, y + 30), font, 1, (255,0,255),4)

  #超过指定最大保存数量结束程序
 if num > (catch_pic_num): break

 #显示图像
 cv2.imshow(window_name, frame)
 c = cv2.waitKey(10)
 if c & 0xFF == ord('q'):
  break

  #释放摄像头并销毁所有窗口
 cap.release()
 cv2.destroyAllWindows()

if __name__ == '__main__':
 # 连续截100张图像,存进image文件夹中
 CatchPICFromVideo("get face", 0, 99, "/image")

到此这篇关于python通过opencv调用摄像头操作实例分析的文章就介绍到这了,更多相关python使用opencv调用摄像头操作内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python pandas移动窗口函数rolling的用法

    python pandas移动窗口函数rolling的用法

    今天小编就为大家分享一篇python pandas移动窗口函数rolling的用法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02
  • Python ollama的搭建与使用流程分析

    Python ollama的搭建与使用流程分析

    这篇文章主要介绍了Python ollama的搭建与使用流程分析,详细介绍了ollama的安装方式,本文结合实例给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧
    2024-04-04
  • Python实现在PDF中绘制形状

    Python实现在PDF中绘制形状

    在PDF中绘制图形可以增强文档的视觉效果,通过添加不同类型的形状,如实线、虚线、矩形、圆形等,可以使文档更加生动有趣,本文将通过几个示例介绍如何使用Python 在PDF中绘制不同的图形,需要的可以了解下
    2024-11-11
  • 利用Python优雅的登录校园网

    利用Python优雅的登录校园网

    这篇文章主要介绍了如何利用Python优雅的登录校园网,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下
    2020-10-10
  • Python设计足球联赛赛程表程序的思路与简单实现示例

    Python设计足球联赛赛程表程序的思路与简单实现示例

    足球联赛的赛制就是一支队伍在一个赛季中主客场分别面对联赛中除了自身以外的球队一次,对此我们可以使用一种循环算法来实现,接下来就一起来看一下Python设计足球联赛赛程表程序的思路与简单实现示例:
    2016-06-06
  • python装饰器中@property属性的使用解析

    python装饰器中@property属性的使用解析

    这篇文章主要介绍了python装饰器中@property属性的使用解析,property属性是一种用起来像是使用的实例属性一样的特殊属性,可以对应于某个方法,需要的朋友可以参考下
    2023-09-09
  • Python一行代码可直接使用最全盘点

    Python一行代码可直接使用最全盘点

    本文盘点一些Python中常用的一行(不限于一行)代码,可直接用在日常编码实践中,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-05-05
  • Flask中提供静态文件的实例讲解

    Flask中提供静态文件的实例讲解

    在本篇文章里小编给大家分享的是一篇关于Flask中提供静态文件的实例及相关知识点详解,有兴趣的朋友们可以跟着学习下。
    2021-12-12
  • 使用Python实现正态分布、正态分布采样

    使用Python实现正态分布、正态分布采样

    今天小编就为大家分享一篇使用Python实现正态分布、正态分布采样,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-11-11
  • Pandas中DataFrame的基本操作之重新索引讲解

    Pandas中DataFrame的基本操作之重新索引讲解

    这篇文章主要介绍了Pandas中DataFrame的基本操作之重新索引,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-07-07

最新评论