Python使用OpenCV和K-Means聚类对毕业照进行图像分割

 更新时间:2021年06月10日 12:00:26   作者:刘润森!  
图像分割是将图像分割成多个不同区域(或片段)的过程。目标是将图像的表示变成更容易和更有意义的图像。在这篇博客中,我们详细的介绍了使用方法,感兴趣的可以了解一下

图像分割是将图像分割成多个不同区域(或片段)的过程。目标是将图像的表示变成更容易和更有意义的图像。

在这篇博客中,我们将看到一种图像分割方法,即K-Means Clustering

K-Means 聚类是一种无监督机器学习算法,旨在将N 个观测值划分为K 个聚类,其中每个观测值都属于具有最近均值的聚类。集群是指由于某些相似性而聚合在一起的数据点的集合。对于图像分割,这里的簇是不同的图像颜色。

我们使用的环境是pip install opencv-python numpy matplotlib

选择的图片是我们学校毕业照的图片,放心这里没有我,在学校公众号找的美图。

导入所需模块:

import cv2
import numpy as np
import matplotlib.pyplot as plt
# read the image
image = cv2.imread("Graduation.jpg")

在进行图像分割之前,让我们将图像转换为RGB格式:

image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

我们将使用cv2.kmeans()函数,它将一个2D数组作为输入,并且由于我们的原始图像是3D(宽度、高度和深度为3 个 RGB值),我们需要将高度和宽度展平为单个像素向量(3 个 RGB值):

# 将图像重塑为像素和3个颜色值(RGB)的2D数组
print(image.shape) #(853, 1280, 3)
pixel_values = image.reshape((-1, 3))
# 转换为numpy的float32
pixel_values = np.float32(pixel_values)
print(pixel_values.shape) #(1091840, 3)

关于opencv下的kmean算法,函数为cv2.kmeans()
函数的格式为:kmeans(data, K, bestLabels, criteria, attempts, flags)

data: 分类数据,最好是np.float32的数据,每个特征放一列。之所以是np.float32原因是这种数据类型运算速度快,如果是uint型数据将会很慢。

K: 分类数,opencv2的kmeans分类是需要已知分类数的。

bestLabels:预设的分类标签:没有的话 None

criteria:迭代停止的模式选择,这是一个含有三个元素的元组型数。格式为(type,max_iter,epsilon)max_iter迭代次数,epsilon结果的精确性

其中,type又有三种选择:

  • cv2.TERM_CRITERIA_EPS :精确度(误差)满足epsilon停止。
  • cv2.TERM_CRITERIA_MAX_ITER:迭代次数超过max_iter停止
  • cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_MAX_ITER,两者合体,任意一个满足结束。
  • - attempts:重复试验kmeans算法次数,将会返回最好的一次结果

flags:初始类中心选择,两种方法

cv2.KMEANS_PP_CENTERS 算法kmeans++的center; cv2.KMEANS_RANDOM_CENTERS随机初始化

在这里,我们需要设置criteria确定停止标准。我们将在超过某些迭代次数(例如500)时停止,或者如果集群移动小于某个 epsilon 值(让我们在这里选择0.1),下面的代码在OpenCV 中定义了这个停止标准:

# 确定停止标准
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 500, 0.1)

上面图像,会发现五种主要颜色(分别是天空、草地、树、人的上身白,人的下身黑)

因此,我们将为这张图片使用K=5:

k = 5
_, labels, (centers) = cv2.kmeans(pixel_values, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)

cv2.KMEANS_RANDOM_CENTERS只是指示OpenCV最初随机分配集群的值。

我们将扁平化的图像像素值转换为浮点数32类型,是因为cv2.kmeans() 浮点数32类型,然后,让我们将浮点数转换回8 位像素值np.uint8(centers)

# 转换回np.uint8
centers = np.uint8(centers)

# 展平标签阵列
labels = labels.flatten()

segmented_image = centers[labels.flatten()]

转换回原始图像形状并显示:

#重塑回原始图像尺寸
segmented_image = segmented_image.reshape(image.shape)
plt.imshow(segmented_image)
plt.show()


当然,我们还可以禁用图像中的一些K-Means 聚类集群。例如,让我们禁用集群编号1并显示图像:

# 禁用2号群集(将像素变为黑色)
masked_image = np.copy(segmented_image)
# 转换为像素值向量的形状
masked_image = masked_image.reshape((-1, 3))
cluster1 = 1
masked_image[labels == cluster1] = [0, 0, 0]
# 转换回原始形状
masked_image = masked_image.reshape(image.shape)
plt.imshow(masked_image)
plt.show()

在这里插入图片描述

原来K-Means 聚类2 号集群 是树。

请注意,还有其他分割技术,例如霍夫变换、轮廓检测和当前最先进的语义分割。

到此这篇关于Python使用OpenCV和K-Means聚类对毕业照进行图像分割的文章就介绍到这了,更多相关OpenCV和K-Means图像分割内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Django中文件上传和文件访问微项目的方法

    Django中文件上传和文件访问微项目的方法

    这篇文章主要介绍了Django中文件上传和文件访问微项目的方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-04-04
  • Python实现Linux的find命令实例分享

    Python实现Linux的find命令实例分享

    本文给大家分享的是使用python简单实现模拟linux的find命令的实例代码,推荐给大家,希望大家能够喜欢
    2017-06-06
  • 在Python中给Nan值更改为0的方法

    在Python中给Nan值更改为0的方法

    今天小编就为大家分享一篇在Python中给Nan值更改为0的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-10-10
  • 一行Python代码制作动态二维码的实现

    一行Python代码制作动态二维码的实现

    这篇文章主要介绍了一行Python代码制作动态二维码的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-09-09
  • python中函数默认值使用注意点详解

    python中函数默认值使用注意点详解

    下面小编就为大家带来一篇python中函数默认值使用注意点详解。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2016-06-06
  • OpenCV半小时掌握基本操作之图像梯度

    OpenCV半小时掌握基本操作之图像梯度

    这篇文章主要介绍了OpenCV基本操作之图像梯度,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-09-09
  • 解决Jupyter 文件路径的问题

    解决Jupyter 文件路径的问题

    这篇文章主要介绍了解决Jupyter 文件路径的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03
  • Python使用wxPython实现计算器

    Python使用wxPython实现计算器

    这篇文章主要为大家详细介绍了Python使用wxPython实现计算器,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-01-01
  • 使用Python脚本实现批量网站存活检测遇到问题及解决方法

    使用Python脚本实现批量网站存活检测遇到问题及解决方法

    本文是小编自己编写的一个使用python实现批量网站存活检测。在项目测试中非常有用。本文给大家分享了遇到的问题及解决方案,非常不错,具有参考借鉴价值,感兴趣的朋友一起看看吧
    2016-10-10
  • Python守护进程和脚本单例运行详解

    Python守护进程和脚本单例运行详解

    本篇文章主要介绍了Python守护进程和脚本单例运行,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-01-01

最新评论