Python道路车道线检测的实现
车道线检测是自动驾驶汽车以及一般计算机视觉的关键组件。这个概念用于描述自动驾驶汽车的路径并避免进入另一条车道的风险。
在本文中,我们将构建一个机器学习项目来实时检测车道线。我们将使用 OpenCV 库使用计算机视觉的概念来做到这一点。为了检测车道,我们必须检测车道两侧的白色标记。
使用 Python 和 OpenCV 进行道路车道线检测
使用 Python 中的计算机视觉技术,我们将识别自动驾驶汽车必须行驶的道路车道线。这将是自动驾驶汽车的关键部分,因为自动驾驶汽车不应该越过它的车道,也不应该进入对面车道以避免事故。
帧掩码和霍夫线变换
要检测车道中的白色标记,首先,我们需要屏蔽帧的其余部分。我们使用帧屏蔽来做到这一点。该帧只不过是图像像素值的 NumPy 数组。为了掩盖帧中不必要的像素,我们只需将 NumPy 数组中的这些像素值更新为 0。
制作后我们需要检测车道线。用于检测此类数学形状的技术称为霍夫变换。霍夫变换可以检测矩形、圆形、三角形和直线等形状。
代码下载
源码请下载:车道线检测项目代码
按照以下步骤在 Python 中进行车道线检测:
1.导入包
import matplotlib.pyplot as plt import numpy as np import cv2 import os import matplotlib.image as mpimg from moviepy.editor import VideoFileClip import math
2. 应用帧屏蔽并找到感兴趣的区域:
def interested_region(img, vertices): if len(img.shape) > 2: mask_color_ignore = (255,) * img.shape[2] else: mask_color_ignore = 255 cv2.fillPoly(np.zeros_like(img), vertices, mask_color_ignore) return cv2.bitwise_and(img, np.zeros_like(img))
3.霍夫变换空间中像素到线的转换:
def hough_lines(img, rho, theta, threshold, min_line_len, max_line_gap): lines = cv2.HoughLinesP(img, rho, theta, threshold, np.array([]), minLineLength=min_line_len, maxLineGap=max_line_gap) line_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8) lines_drawn(line_img,lines) return line_img
4. 霍夫变换后在每一帧中创建两条线:
def lines_drawn(img, lines, color=[255, 0, 0], thickness=6): global cache global first_frame slope_l, slope_r = [],[] lane_l,lane_r = [],[] α =0.2 for line in lines: for x1,y1,x2,y2 in line: slope = (y2-y1)/(x2-x1) if slope > 0.4: slope_r.append(slope) lane_r.append(line) elif slope < -0.4: slope_l.append(slope) lane_l.append(line) img.shape[0] = min(y1,y2,img.shape[0]) if((len(lane_l) == 0) or (len(lane_r) == 0)): print ('no lane detected') return 1 slope_mean_l = np.mean(slope_l,axis =0) slope_mean_r = np.mean(slope_r,axis =0) mean_l = np.mean(np.array(lane_l),axis=0) mean_r = np.mean(np.array(lane_r),axis=0) if ((slope_mean_r == 0) or (slope_mean_l == 0 )): print('dividing by zero') return 1 x1_l = int((img.shape[0] - mean_l[0][1] - (slope_mean_l * mean_l[0][0]))/slope_mean_l) x2_l = int((img.shape[0] - mean_l[0][1] - (slope_mean_l * mean_l[0][0]))/slope_mean_l) x1_r = int((img.shape[0] - mean_r[0][1] - (slope_mean_r * mean_r[0][0]))/slope_mean_r) x2_r = int((img.shape[0] - mean_r[0][1] - (slope_mean_r * mean_r[0][0]))/slope_mean_r) if x1_l > x1_r: x1_l = int((x1_l+x1_r)/2) x1_r = x1_l y1_l = int((slope_mean_l * x1_l ) + mean_l[0][1] - (slope_mean_l * mean_l[0][0])) y1_r = int((slope_mean_r * x1_r ) + mean_r[0][1] - (slope_mean_r * mean_r[0][0])) y2_l = int((slope_mean_l * x2_l ) + mean_l[0][1] - (slope_mean_l * mean_l[0][0])) y2_r = int((slope_mean_r * x2_r ) + mean_r[0][1] - (slope_mean_r * mean_r[0][0])) else: y1_l = img.shape[0] y2_l = img.shape[0] y1_r = img.shape[0] y2_r = img.shape[0] present_frame = np.array([x1_l,y1_l,x2_l,y2_l,x1_r,y1_r,x2_r,y2_r],dtype ="float32") if first_frame == 1: next_frame = present_frame first_frame = 0 else : prev_frame = cache next_frame = (1-α)*prev_frame+α*present_frame cv2.line(img, (int(next_frame[0]), int(next_frame[1])), (int(next_frame[2]),int(next_frame[3])), color, thickness) cv2.line(img, (int(next_frame[4]), int(next_frame[5])), (int(next_frame[6]),int(next_frame[7])), color, thickness) cache = next_frame
5.处理每一帧视频以检测车道:
def weighted_img(img, initial_img, α=0.8, β=1., λ=0.): return cv2.addWeighted(initial_img, α, img, β, λ) def process_image(image): global first_frame gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) img_hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV) lower_yellow = np.array([20, 100, 100], dtype = "uint8") upper_yellow = np.array([30, 255, 255], dtype="uint8") mask_yellow = cv2.inRange(img_hsv, lower_yellow, upper_yellow) mask_white = cv2.inRange(gray_image, 200, 255) mask_yw = cv2.bitwise_or(mask_white, mask_yellow) mask_yw_image = cv2.bitwise_and(gray_image, mask_yw) gauss_gray= cv2.GaussianBlur(mask_yw_image, (5, 5), 0) canny_edges=cv2.Canny(gauss_gray, 50, 150) imshape = image.shape lower_left = [imshape[1]/9,imshape[0]] lower_right = [imshape[1]-imshape[1]/9,imshape[0]] top_left = [imshape[1]/2-imshape[1]/8,imshape[0]/2+imshape[0]/10] top_right = [imshape[1]/2+imshape[1]/8,imshape[0]/2+imshape[0]/10] vertices = [np.array([lower_left,top_left,top_right,lower_right],dtype=np.int32)] roi_image = interested_region(canny_edges, vertices) theta = np.pi/180 line_image = hough_lines(roi_image, 4, theta, 30, 100, 180) result = weighted_img(line_image, image, α=0.8, β=1., λ=0.) return result
6. 将输入视频剪辑成帧并得到结果输出视频文件:
first_frame = 1 white_output = '__path_to_output_file__' clip1 = VideoFileClip("__path_to_input_file__") white_clip = clip1.fl_image(process_image) white_clip.write_videofile(white_output, audio=False)
车道线检测项目 GUI 代码:
import tkinter as tk from tkinter import * import cv2 from PIL import Image, ImageTk import os import numpy as np global last_frame1 last_frame1 = np.zeros((480, 640, 3), dtype=np.uint8) global last_frame2 last_frame2 = np.zeros((480, 640, 3), dtype=np.uint8) global cap1 global cap2 cap1 = cv2.VideoCapture("path_to_input_test_video") cap2 = cv2.VideoCapture("path_to_resultant_lane_detected_video") def show_vid(): if not cap1.isOpened(): print("cant open the camera1") flag1, frame1 = cap1.read() frame1 = cv2.resize(frame1,(400,500)) if flag1 is None: print ("Major error!") elif flag1: global last_frame1 last_frame1 = frame1.copy() pic = cv2.cvtColor(last_frame1, cv2.COLOR_BGR2RGB) img = Image.fromarray(pic) imgtk = ImageTk.PhotoImage(image=img) lmain.imgtk = imgtk lmain.configure(image=imgtk) lmain.after(10, show_vid) def show_vid2(): if not cap2.isOpened(): print("cant open the camera2") flag2, frame2 = cap2.read() frame2 = cv2.resize(frame2,(400,500)) if flag2 is None: print ("Major error2!") elif flag2: global last_frame2 last_frame2 = frame2.copy() pic2 = cv2.cvtColor(last_frame2, cv2.COLOR_BGR2RGB) img2 = Image.fromarray(pic2) img2tk = ImageTk.PhotoImage(image=img2) lmain2.img2tk = img2tk lmain2.configure(image=img2tk) lmain2.after(10, show_vid2) if __name__ == '__main__': root=tk.Tk() lmain = tk.Label(master=root) lmain2 = tk.Label(master=root) lmain.pack(side = LEFT) lmain2.pack(side = RIGHT) root.title("Lane-line detection") root.geometry("900x700+100+10") exitbutton = Button(root, text='Quit',fg="red",command= root.destroy).pack(side = BOTTOM,) show_vid() show_vid2() root.mainloop() cap.release()
到此这篇关于Python道路车道线检测的实现的文章就介绍到这了,更多相关Python 道路车道线检测内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
python使用tkinter实现透明窗体上绘制随机出现的小球(实例代码)
今天教大家怎么实现Tkinter透明窗体,在上篇文章给大家介绍过透明窗体上绘制小球,今天接着通过实例代码给大家分享python使用tkinter实现透明窗体上绘制随机出现的小球的实例代码,感兴趣的朋友跟随小编一起看看吧2021-05-05详解Tensorflow数据读取有三种方式(next_batch)
本篇文章主要介绍了Tensorflow数据读取有三种方式(next_batch),小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧2018-02-02
最新评论