python数据分析之DataFrame内存优化

 更新时间:2021年07月12日 09:29:31   作者:柳小葱  
pandas处理几百兆的dataframe是没有问题的,但是我们在处理几个G甚至更大的数据时,就会特别占用内存,对内存小的用户特别不好,所以对数据进行压缩是很有必要的,本文就介绍了python DataFrame内存优化,感兴趣的可以了解一下

💃今天看案例的时候看见了一个关于pandas数据的内存压缩功能,特地来记录一下。

🎒先说明一下情况,pandas处理几百兆的dataframe是没有问题的,但是我们在处理几个G甚至更大的数据时,就会特别占用内存,对内存小的用户特别不好,所以对数据进行压缩是很有必要的。

1. pandas查看数据占用大小

给大家看一下这么查看自己的内存大小(user_log是dataframe的名字)

#方法1 就是使用查看dataframe信息的命令
user_log.info()
#方法2 使用memory_usage()或者getsizeof(user_log)
import time
import sys
print('all_data占据内存约: {:.2f} GB'.format(user_log.memory_usage().sum()/ (1024**3)))
print('all_data占据内存约: {:.2f} GB'.format(sys.getsizeof(user_log)/(1024**3)))

我这里有个dataframe文件叫做user_log,原始大小为1.91G,然后pandas读取出来,内存使用了2.9G。

看一下原始数据大小:1.91G

在这里插入图片描述

pandas读取后的内存消耗:2.9G

在这里插入图片描述

2. 对数据进行压缩

  • 数值类型的列进行降级处理(‘int16', ‘int32', ‘int64', ‘float16', ‘float32', ‘float64')
  • 字符串类型的列转化为类别类型(category)
  • 字符串类型的列的类别数超过总行数的一半时,建议使用object类型

我们这里主要采用对数值型类型的数据进行降级,说一下降级是什么意思意思呢,可以比喻为一个一个抽屉,你有一个大抽屉,但是你只装了钥匙,这就会有很多空间浪费掉,如果我们将钥匙放到一个小抽屉里,就可以节省很多空间,就像字符的类型int32 比int8占用空间大很多,但是我们的数据使用int8类型就够了,这就导致数据占用了很多空间,我们要做的就是进行数据类型转换,节省内存空间。

压缩数值的这段代码是从天池大赛的某个项目中看见的,查阅资料后发现,大家压缩内存都是基本固定的函数形式

def reduce_mem_usage(df):
    starttime = time.time()
    numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
    start_mem = df.memory_usage().sum() / 1024**2
    for col in df.columns:
        col_type = df[col].dtypes
        if col_type in numerics:
            c_min = df[col].min()
            c_max = df[col].max()
            if pd.isnull(c_min) or pd.isnull(c_max):
                continue
            if str(col_type)[:3] == 'int':
                if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
                    df[col] = df[col].astype(np.int8)
                elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
                    df[col] = df[col].astype(np.int16)
                elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
                    df[col] = df[col].astype(np.int32)
                elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
                    df[col] = df[col].astype(np.int64)
            else:
                if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
                    df[col] = df[col].astype(np.float16)
                elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
                    df[col] = df[col].astype(np.float32)
                else:
                    df[col] = df[col].astype(np.float64)
    end_mem = df.memory_usage().sum() / 1024**2
    print('-- Mem. usage decreased to {:5.2f} Mb ({:.1f}% reduction),time spend:{:2.2f} min'.format(end_mem,
                                                                                                           100*(start_mem-end_mem)/start_mem,
                                                                                                           (time.time()-starttime)/60))
    return df

用压缩的方式将数据导入user_log2中

#首先读取到csv中如何传入函数生称新的csv
user_log2=reduce_mem_usage(pd.read_csv(r'/Users/liucong/MainFiles/ML/tianchi/tianmiao/user_log_format1.csv'))

读取成功:内训大小为890.48m 减少了69.6%,效果显著

在这里插入图片描述

查看压缩后的数据集信息:类型发生了变化,数量变小了

在这里插入图片描述

3. 参考资料

《天池大赛》
《kaggle大赛》
链接: pandas处理datafarme节约内存.

到此这篇关于python数据分析之DataFrame内存优化的文章就介绍到这了,更多相关python DataFrame内存优化内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 新手Python环境配置指南及pip安装教程

    新手Python环境配置指南及pip安装教程

    这篇文章主要给大家介绍了新手Python环境配置指南及pip安装教程的相关资料,pip是一款非常方便的python包管理工具,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2023-07-07
  • Django项目的创建全过程

    Django项目的创建全过程

    本文介绍了如何在Windows系统上安装和配置Python解释器、切换默认版本、使用虚拟环境安装Django,并通过PyCharm创建和管理Django项目
    2025-01-01
  • python3获取当前文件的上一级目录实例

    python3获取当前文件的上一级目录实例

    下面小编就为大家分享一篇python3获取当前文件的上一级目录实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-04-04
  • python+selenium+autoit实现文件上传功能

    python+selenium+autoit实现文件上传功能

    这篇文章主要介绍了python+selenium+autoit实现文件上传功能,需要的朋友可以参考下
    2017-08-08
  • python案例中Flask全局配置示例详解

    python案例中Flask全局配置示例详解

    这篇文章主要为大家介绍了python案例中Flask全局配置示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-12-12
  • pygame外星人入侵小游戏超详细开发流程

    pygame外星人入侵小游戏超详细开发流程

    这篇文章主要介绍了利用Python编写的外星人入侵游戏的示例代码,文中的代码讲解详细,对我们学习Python有一定的帮助,感兴趣的可以学习一下
    2022-03-03
  • Flask框架利用Echarts实现绘制图形

    Flask框架利用Echarts实现绘制图形

    echarts是百度推出的一款开源的基于JavaScript的可视化图表库,该开发库目前发展非常不错,且支持各类图形的绘制可定制程度高。如下演示案例中,将分别展示运用该绘图库如何前后端交互绘制(饼状图,柱状图,折线图)这三种最基本的图形,需要的可以参考一下
    2022-10-10
  • Python3用tkinter和PIL实现看图工具

    Python3用tkinter和PIL实现看图工具

    这篇文章给大家分享了Python3用tkinter和PIL实现看图工具的详细实例代码,有兴趣的朋友参考学习下。
    2018-06-06
  • 解决nohup重定向python输出到文件不成功的问题

    解决nohup重定向python输出到文件不成功的问题

    今天小编就为大家分享一篇解决nohup重定向python输出到文件不成功的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-05-05
  • 解决python flask中config配置管理的问题

    解决python flask中config配置管理的问题

    今天小编就为大家分享一篇解决python flask中config配置管理的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07

最新评论