OpenCV 图像梯度的实现方法

 更新时间:2021年07月25日 09:03:52   作者:我是小白呀  
梯度简单来说就是求导。本文主要介绍了OpenCV 图像梯度的实现方法,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

概述

OpenCV 是一个跨平台的计算机视觉库, 支持多语言, 功能强大. 今天小白就带大家一起携手走进 OpenCV 的世界.

梯度运算

梯度: 膨胀 (Dilating) - 腐蚀 (Eroding).

例子:

# 读取图片
pie = cv2.imread("pie.png")

# 核
kernel = np.ones((7, 7), np.uint8)

# 计算梯度
gradient = cv2.morphologyEx(pie, cv2.MORPH_GRADIENT, kernel=kernel)

# 图片展示
cv2.imshow("gradient", gradient)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

礼帽

礼帽 (Top Hat): 原始输入 - 开运算结果.

例子:

# 读取图片
img = cv2.imread("white.png")

# 核
kernel = np.ones((7, 7), np.uint8)

# 礼帽
tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel=kernel)

# 图片展示
cv2.imshow("tophat", tophat)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

黑帽

黑帽 (Black Hat): 闭运算 - 原始输入.

例子:

# 读取图片
img = cv2.imread("white.png")

# 核
kernel = np.ones((7, 7), np.uint8)

# 礼帽
blackhat = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel=kernel)

# 图片展示
cv2.imshow("blackhat", blackhat)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

Sobel 算子

Sobel 算子 (Sobeloperator) 是边缘检测中非常重要的一个算子. Sobel 算子是一类离散性差分算子, 用来运算图像高亮度函数的灰度之近似值.

格式:

cv2.Sobel(src, ddepth, dx, dy, ksize)

参数:

  • src: 原图
  • ddepth: 图片深度
  • dx: 水平方向
  • dy: 竖直方向
  • ksize: 算子大小

计算 x

代码:

# 读取图片
img = cv2.imread("pie.png")

# Sobel算子
sobelx = cv2.Sobel(img, -1, 1, 0, ksize=3)

# 展示图片
cv2.imshow("sobelx", sobelx)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

计算 y

代码:

# 读取图片
img = cv2.imread("pie.png")

# Sobel算子
sobely = cv2.Sobel(img, -1, 0, 1, ksize=3)

# 展示图片
cv2.imshow("sobely", sobely)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

计算 x+y

代码:

# 读取图片
img = cv2.imread("pie.png")

# Sobel算子
sobel = cv2.Sobel(img, -1, 1, 1, ksize=3)

# 展示图片
cv2.imshow("sobel", sobel)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

融合

代码:

# Sobel算子
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3)
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=3)

# 转换成绝对值
sobelx = cv2.convertScaleAbs(sobelx)
sobely = cv2.convertScaleAbs(sobely)

# 融合
sobel_xy = cv2.addWeighted(sobelx, 0.5, sobely, 0.5, 0)

# 展示图片
cv2.imshow("sobel_xy", sobel_xy)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

注: 当 ddepth 设置为 -1, 即与原图保持一致, 得到的结果可能是错误的. 计算梯度值可能出现负数, 负数会自动截断为 0. 为了避免信息丢失, 我们需要使用更高是数据类型 cv2.CV_64F, 再通过取绝对值将其映射到 cv2.CV_8U 类型.

到此这篇关于OpenCV 图像梯度的实现方法的文章就介绍到这了,更多相关OpenCV 图像梯度内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python Django搭建文件下载服务器的实现

    Python Django搭建文件下载服务器的实现

    这篇文章主要介绍了Python Django搭建文件下载服务器的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-05-05
  • Python Scrapy图片爬取原理及代码实例

    Python Scrapy图片爬取原理及代码实例

    这篇文章主要介绍了Python Scrapy图片爬取原理及代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-06-06
  • NumPy双曲函数与集合操作详解

    NumPy双曲函数与集合操作详解

    NumPy 提供了 sinh()、cosh() 和 tanh() 等 ufunc,它们接受弧度值并生成相应的双曲正弦、双曲余弦和双曲正切值,我们可以使用 NumPy 的 unique() 方法从任何数组中找到唯一元素,本文给大家详细介绍了NumPy双曲函数与集合操作,需要的朋友可以参考下
    2024-06-06
  • 利用matplotlib实现根据实时数据动态更新图形

    利用matplotlib实现根据实时数据动态更新图形

    今天小编就为大家分享一篇利用matplotlib实现根据实时数据动态更新图形,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • Django实现后台上传并显示图片功能

    Django实现后台上传并显示图片功能

    这篇文章主要介绍了Django实现后台上传并显示图片功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-05-05
  • python游戏库pygame经典教程(推荐!)

    python游戏库pygame经典教程(推荐!)

    Python Pygame是一款专门为开发和设计 2D 电子游戏而生的软件包,是入门级游戏开发库,下面这篇文章主要给大家介绍了python游戏库pygame经典教程的相关资料,需要的朋友可以参考下
    2022-12-12
  • 使用Python解决常见格式图像读取nii,dicom,mhd

    使用Python解决常见格式图像读取nii,dicom,mhd

    这篇文章主要介绍了使用Python解决常见格式图像读取nii,dicom,mhd,下文具体操作过程需要的小伙伴可以参考一下
    2022-04-04
  • python获取微信企业号打卡数据并生成windows计划任务

    python获取微信企业号打卡数据并生成windows计划任务

    由于公司的系统用的是Java版本,开通了企业号打卡之后又没有预算让供应商做数据对接,所以只能自己捣鼓这个,以下是个人设置的一些内容,仅供大家参考
    2019-04-04
  • python 调用Google翻译接口的方法

    python 调用Google翻译接口的方法

    这篇文章主要介绍了python 调用Google翻译接口的方法,帮助大家更好的理解和使用python处理url,感兴趣的朋友可以了解下
    2020-12-12
  • Python魔法方法 容器部方法详解

    Python魔法方法 容器部方法详解

    这篇文章主要介绍了Python魔法方法 容器部方法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-01-01

最新评论