基于python定位棋子位置及识别棋子颜色

 更新时间:2021年07月26日 11:30:20   作者:翟羽嚄  
本文主要介绍了python定位棋子位置及识别棋子颜色,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

这一篇主要实现定位棋子位置及识别棋子颜色。

围棋棋盘原图如下:

在这里插入图片描述

经过上一章节处理,已经将棋盘位置找到,如下图:

在这里插入图片描述

现在根据新图,进行棋子位置的定位

1、将棋盘分割成19x19的小方格

为了定位出棋盘每个交叉点上,是否有棋子,需要将棋盘分割成19X19的小方格,由于围棋棋盘每个交叉线直接距离相同,是矩形,因此分割成小方格十分容易,如下图:

在这里插入图片描述

若想将棋盘分割成19x19的小方格,需要知道以下几个参数。

small_length=38  #每个小格宽高
qizi_zhijing=38#棋子直径
zuoshangjiao=20#棋盘四周的宽度

这些可以使用imagewathch(VS下opencv的插件)工具,方便的知道,这个工具可以实时查看图像的宽高,某个位置的像素值。这个工具的使用可以看我另外一篇文章:opencv用VS2013调试时用Image Watch插件查看图片,代替一堆数据,直观很多。
下面是将原图分割成19X19小方格的代码

img = cv2.imread("src.jpg")
cv2.imshow("src",img)
#变量定义
small_length=38  #每个小格宽高
qizi_zhijing=38#棋子直径
zuoshangjiao=20#棋盘四周的宽度

for i in range(19):
    for j in range(19):
        #print(i,j)
        lie = i
        hang = j
        Tp_x = small_length * lie
        Tp_y = small_length * hang
        Tp_width = qizi_zhijing
        Tp_height = qizi_zhijing

        #测试用
        cv2.rectangle(img, (Tp_x, Tp_y), (Tp_x + Tp_width, Tp_y + Tp_height),(255, 0, 0), 2)
        cv2.imwrite('img.jpg', img)
        img_temp=img[Tp_y:Tp_y+Tp_height, Tp_x:Tp_x+Tp_width]#参数含义分别是:y、y+h、x、x+w
        cv2.imwrite('img_temp3.jpg', img_temp)
        cv2.imshow("3", img_temp)
        cv2.waitKey(20)

2、根据像素占比识别是否是黑色棋子

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

上面三种图像是我们分割成小方格后的三种主要形态,分别代表黑色棋子,白色棋子以及无棋子。其中黑色棋子最好查找,我们将图像进行灰度化——二值化后,通过统计黑色像素占比超过一定数值,就能知道该处是否有黑色棋子。

这里我将统计黑色占比的代码,封装成了一个函数,如下;

"""  "*******************************************************************************************
*函数功能 :统计二值化图片黑色像素点百分比
*输入参数 :输入裁剪后图像,
*返 回 值 :返回黑色像素点占比0-1之间
*编写时间 : 2021.6.30
*作    者 : diyun
********************************************************************************************"""
def Heise_zhanbi(img):
    [height, width, tongdao] = img.shape
    #print(width, height, tongdao)
    # cv2.imshow("3", img)
    # cv2.waitKey(20)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # cv2.imshow("binary", gray)
    # cv2.waitKey(100)

    etVal, threshold = cv2.threshold(gray, 125, 255, cv2.THRESH_BINARY)
    # cv2.imshow("threshold", threshold)
    # cv2.waitKey(200)
    a = 0
    b = 0
    counter = 0#;/*目标像素点个数*/
    zhanbi = 0#;/*目标像素点比值*/
    for row in range(height):
        for col in range(width):
            val = threshold[row][col]
            if (val) == 0:#黑色
                a = a + 1
            else:
                b = b + 1
    zhanbi = (float)(a) / (float)(height*width)
    #print("黑色像素个数", a, "黑色像素占比", zhanbi)
    return zhanbi

3、根据像素占比识别是否是白色棋子

同样的,我们可以统计像素中白色占比,来进行识别该位置是否是白色棋子,但是这里需要注意一个问题,如果按照上面黑色棋子识别方法进行灰度化、二值化会造成白色棋子和无棋子分辨不了,二者都有大面积的白色,因此这里需要调整二值化的阈值,分开无棋子和白色棋子的图像。

封装好的代码如下:

"""  "*******************************************************************************************
*函数功能 :统计二值化图片白色像素点百分比
*输入参数 :输入裁剪后图像,
*返 回 值 :返回白色像素点占比0-1之间
*编写时间 : 2021.6.30
*作    者 : diyun
********************************************************************************************"""
def Baise_zhanbi(img):
    [height, width, tongdao] = img.shape
    #print(width, height, tongdao)
    # cv2.imshow("3", img)
    # cv2.waitKey(20)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # cv2.imshow("binary", gray)
    # cv2.waitKey(100)

    etVal, threshold = cv2.threshold(gray, 235, 255, cv2.THRESH_BINARY)
    # cv2.imshow("threshold", threshold)
    # cv2.waitKey(200)
    a = 0
    b = 0
    counter = 0#;/*目标像素点个数*/
    zhanbi = 0#;/*目标像素点比值*/
    for row in range(height):
        for col in range(width):
            val = threshold[row][col]
            if (val) == 0:#黑色
                a = a + 1
            else:
                b = b + 1
    zhanbi = (float)(b) / (float)(height*width)
    #print("白色像素个数", b, "白色像素占比", zhanbi)
    return zhanbi

效果图如下:

在这里插入图片描述

4、将棋盘棋子位置通过列表表示

我们新建一个19*19的列表来存储棋子,列表中:

0:代表无棋子
1:代表白色
2:代表黑色

代码如下:

list = [[0 for i in range(19)] for j in range(19)]

当为黑色棋子时:

list[hang][lie]=2#黑色
#print("当前棋子为黑色")
print("第", i, "行,第", j, "列棋子为黑色:", i, j)

当为白色棋子时:

list[hang][lie] = 1  # 白色
#print("当前棋子为白色")
print("第", i, "行,第", j, "列棋子为白色:", i, j)

效果图如下:

在这里插入图片描述

完整代码如下:

from PIL import ImageGrab
import numpy as np
import cv2
from glob import glob
import os

import time


#Python将数字转换成大写字母
def getChar(number):
    factor, moder = divmod(number, 26) # 26 字母个数
    modChar = chr(moder + 65)          # 65 -> 'A'
    if factor != 0:
        modChar = getChar(factor-1) + modChar # factor - 1 : 商为有效值时起始数为 1 而余数是 0
    return modChar
def getChars(length):
    return [getChar(index) for index in range(length)]



"""  "*******************************************************************************************
*函数功能 :统计二值化图片黑色像素点百分比
*输入参数 :输入裁剪后图像,
*返 回 值 :返回黑色像素点占比0-1之间
*编写时间 : 2021.6.30
*作    者 : diyun
********************************************************************************************"""
def Heise_zhanbi(img):
    [height, width, tongdao] = img.shape
    #print(width, height, tongdao)
    # cv2.imshow("3", img)
    # cv2.waitKey(20)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # cv2.imshow("binary", gray)
    # cv2.waitKey(100)

    etVal, threshold = cv2.threshold(gray, 125, 255, cv2.THRESH_BINARY)
    # cv2.imshow("threshold", threshold)
    # cv2.waitKey(200)
    a = 0
    b = 0
    counter = 0#;/*目标像素点个数*/
    zhanbi = 0#;/*目标像素点比值*/
    for row in range(height):
        for col in range(width):
            val = threshold[row][col]
            if (val) == 0:#黑色
                a = a + 1
            else:
                b = b + 1
    zhanbi = (float)(a) / (float)(height*width)
    #print("黑色像素个数", a, "黑色像素占比", zhanbi)
    return zhanbi


"""  "*******************************************************************************************
*函数功能 :统计二值化图片白色像素点百分比
*输入参数 :输入裁剪后图像,
*返 回 值 :返回白色像素点占比0-1之间
*编写时间 : 2021.6.30
*作    者 : diyun
********************************************************************************************"""
def Baise_zhanbi(img):
    [height, width, tongdao] = img.shape
    #print(width, height, tongdao)
    # cv2.imshow("3", img)
    # cv2.waitKey(20)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # cv2.imshow("binary", gray)
    # cv2.waitKey(100)

    etVal, threshold = cv2.threshold(gray, 235, 255, cv2.THRESH_BINARY)
    # cv2.imshow("threshold", threshold)
    # cv2.waitKey(200)
    a = 0
    b = 0
    counter = 0#;/*目标像素点个数*/
    zhanbi = 0#;/*目标像素点比值*/
    for row in range(height):
        for col in range(width):
            val = threshold[row][col]
            if (val) == 0:#黑色
                a = a + 1
            else:
                b = b + 1
    zhanbi = (float)(b) / (float)(height*width)
    #print("白色像素个数", b, "白色像素占比", zhanbi)
    return zhanbi

"""  "*******************************************************************************************
*函数功能 :定位棋盘位置
*输入参数 :截图
*返 回 值 :裁剪后的图像
*编写时间 : 2021.6.30
*作    者 : diyun
********************************************************************************************"""
def dingweiqizi_weizhi(img):
    '''********************************************
    1、定位棋盘位置
    ********************************************'''
    #img = cv2.imread("./screen/1.jpg")

    image = img.copy()
    w, h, c = img.shape
    img2 = np.zeros((w, h, c), np.uint8)
    img3 = np.zeros((w, h, c), np.uint8)
    # img = ImageGrab.grab() #bbox specifies specific region (bbox= x,y,width,height *starts top-left)

    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    lower = np.array([10, 0, 0])
    upper = np.array([40, 255, 255])
    mask = cv2.inRange(hsv, lower, upper)
    erodeim = cv2.erode(mask, None, iterations=2)  # 腐蚀
    dilateim = cv2.dilate(erodeim, None, iterations=2)

    img = cv2.bitwise_and(img, img, mask=dilateim)
    frame = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    ret, dst = cv2.threshold(frame, 100, 255, cv2.THRESH_BINARY)
    contours, hierarchy = cv2.findContours(dst, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)



    #cv2.imshow("0", img)

    i = 0
    maxarea = 0
    nextarea = 0
    maxint = 0
    for c in contours:
        if cv2.contourArea(c) > maxarea:
            maxarea = cv2.contourArea(c)
            maxint = i
        i += 1

    # 多边形拟合
    epsilon = 0.02 * cv2.arcLength(contours[maxint], True)
    if epsilon < 1:
        print("error :   epsilon < 1")
        pass

    # 多边形拟合
    approx = cv2.approxPolyDP(contours[maxint], epsilon, True)
    [[x1, y1]] = approx[0]
    [[x2, y2]] = approx[2]

    checkerboard = image[y1:y2, x1:x2]
    # cv2.imshow("1", checkerboard)
    # cv2.waitKey(1000)
    #cv2.destroyAllWindows()
    return checkerboard

"""  "*******************************************************************************************
*函数功能 :定位棋子颜色及位置
*输入参数 :裁剪后的图像
*返 回 值 :棋子颜色及位置列表
*编写时间 : 2021.6.30
*作    者 : diyun
********************************************************************************************"""
def dingweiqizi_yanse_weizhi(img):
    '''********************************************
    2、识别棋盘棋子位置及颜色及序号;
    ********************************************'''
    #img = cv2.imread("./checkerboard/checkerboard_1.jpg")
    img = cv2.resize(img, (724,724), interpolation=cv2.INTER_AREA)
    #cv2.imshow("src",img)
    #cv2.waitKey(1000)

    #变量定义
    small_length=38  #每个小格宽高
    qizi_zhijing=38#棋子直径
    zuoshangjiao=20#棋盘四周的宽度

    list = [[0 for i in range(19)] for j in range(19)]
    #print(list)

    for i in range(19):
        for j in range(19):

            lie = i
            hang = j

            Tp_x = small_length * lie
            Tp_y = small_length * hang
            Tp_width = qizi_zhijing
            Tp_height = qizi_zhijing

            img_temp=img[Tp_y:Tp_y+Tp_height, Tp_x:Tp_x+Tp_width]#参数含义分别是:y、y+h、x、x+w

            heise_zhanbi=Heise_zhanbi(img_temp)
            if heise_zhanbi>0.5:
                list[hang][lie]=2#黑色
                print("第", j+1, "行,第", i+1, "列棋子为黑色")
                #print("当前棋子为黑色")
            else:
                baise_zhanbi = Baise_zhanbi(img_temp)
                if baise_zhanbi > 0.15:
                    list[hang][lie] = 1  # 白色
                    print("第", j+1, "行,第",i+1 , "列棋子为白色")
                    #print("当前棋子为白色")
                else:
                    list[hang][lie] = 0  # 无棋子
                    #print("当前位置没有棋子")
            #print(heise_zhanbi)
    #cv2.imshow("2",img)
    #print("\n")
    #print(list)
    return  list



if __name__ =="__main__":
    list0 = [[0 for i in range(19)] for j in range(19)]
    list_finall = []
    img = cv2.imread("./screen/9.jpg")

    '''********************************************
    1、定位棋盘位置
    ********************************************'''
    img_after=dingweiqizi_weizhi(img)
    #cv2.imshow("src",img)

    '''********************************************
    2、识别棋盘棋子位置及颜色及序号;
    ********************************************'''
    list1=dingweiqizi_yanse_weizhi(img_after)
    print(list1)

到此这篇关于基于python定位棋子位置及识别棋子颜色的文章就介绍到这了,更多相关python定位棋子位置及识别棋子颜色内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:

相关文章

  • Python使用Paramiko实现轻松判断文件类型

    Python使用Paramiko实现轻松判断文件类型

    Paramiko是一个用于SSHv2协议的Python实现,提供了客户端和服务器功能,下面我们就来看看如何使用Paramiko判断文件类型,并提取文件的上级目录吧
    2025-03-03
  • 利用python在Word文档中创建和执行条件邮件合并

    利用python在Word文档中创建和执行条件邮件合并

    邮件合并域和IF域是Word文档中两种非常实用的域,前者可以用来进行邮件合并,根据数据批量创建定制的Word文档,本文讲介绍如何使用Python在Word文档中创建条件邮件合并域以及执行条件邮件合并,需要的朋友可以参考下
    2024-08-08
  • 6个实用的Python自动化脚本详解

    6个实用的Python自动化脚本详解

    每天你都可能会执行许多重复的任务,例如阅读 pdf、播放音乐、查看天气、打开书签、清理文件夹等等,使用自动化脚本,就无需手动一次又一次地完成这些任务,非常方便。快跟随小编一起试一试吧
    2022-01-01
  • 读取json格式为DataFrame(可转为.csv)的实例讲解

    读取json格式为DataFrame(可转为.csv)的实例讲解

    今天小编就为大家分享一篇读取json格式为DataFrame(可转为.csv)的实例讲解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-06-06
  • python使用Plotly绘图工具绘制散点图、线形图

    python使用Plotly绘图工具绘制散点图、线形图

    这篇文章主要为大家详细介绍了python使用Plotly绘图工具绘制散点图、线形图,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-04-04
  • Python中关于浮点数的冷知识

    Python中关于浮点数的冷知识

    这篇文章主要给大家介绍了Python中关于浮点数的冷知识,文中通过示例代码介绍的非常详细,对大家学习或者使用Python具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
    2019-09-09
  • Django 根据数据模型models创建数据表的实例

    Django 根据数据模型models创建数据表的实例

    今天小编就为大家分享一篇Django 根据数据模型models创建数据表的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-05-05
  • Pytorch:Conv2d卷积前后尺寸详解

    Pytorch:Conv2d卷积前后尺寸详解

    这篇文章主要介绍了Pytorch:Conv2d卷积前后尺寸,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-02-02
  • python机器学习混淆矩阵及confusion matrix函数使用

    python机器学习混淆矩阵及confusion matrix函数使用

    这篇文章主要为大家介绍了python机器学习混淆矩阵confusion_matrix函数使用示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-06-06
  • python3调用c语言代码的全过程记录

    python3调用c语言代码的全过程记录

    python调用c语言代码的方式十分简单,只需四步。下面这篇文章就来给大家详细介绍了关于python3如何调用c语言代码的相关资料,需要的朋友可以参考下
    2021-05-05

最新评论