Python pandas之求和运算和非空值个数统计

 更新时间:2021年08月05日 11:11:12   作者:不思量自难忘  
数据处理的过程中经常会遇到判断空值和求和运算的需求,所以下面这篇文章主要给大家介绍了关于Python pandas之求和运算和非空值个数统计的相关资料,需要的朋友可以参考下

准备工作

本文用到的表格内容如下:

先来看一下原始情形:

import pandas as pd
​
df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df)

result:

   分类            货品  实体店销售量  线上销售量  成本   售价
0  水果            苹果      34    234  12   45
1  家电           电视机      56    784  34  156
2  家电            冰箱      78    345  24  785
3  书籍  python从入门到放弃      25     34  13   89
4  水果            葡萄     789     56   7  398

1.非空值计数

非空值计数就是计算某一个去榆中非空数值的个数

1.1对全表进行操作

1.1.1求取每列的非空值个数

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.count())

result:

分类        5
货品        5
实体店销售量    5
线上销售量     5
成本        5
售价        5
dtype: int64

1.1.2 求取每行的非空值个数

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.count(axis=1))

result:

0    6
1    6
2    6
3    6
4    6
dtype: int64

1.2 对单独的一行或者一列进行操作

1.2.1 求取单独某一列的非空值个数

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df['分类'].count())

result:

5

1.2.2 求取单独某一行的非空值个数

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.iloc[0].count())

result:

6

1.3 对多行或者多列进行操作

1.3.1 求取多列的非空值个数

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df[["分类", "货品"]].count())

result:

分类    5
货品    5
dtype: int64

1.3.2 求取多行的非空值个数

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.iloc[[0, 1]].count())

result:

分类        2
货品        2
实体店销售量    2
线上销售量     2
成本        2
售价        2
dtype: int64

2 sum求和

2.1对全表进行操作

2.1.1对每一列进行求和

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.sum())

result:

分类                   水果家电家电书籍水果
货品        苹果电视机冰箱python从入门到放弃葡萄
实体店销售量                      982
线上销售量                      1453
成本                           90
售价                         1473
dtype: object

可以看到,字符串类型的求和直接是字符串拼接,数字类型就正常的数学运算

2.1.2 对每一行进行求和

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.sum(axis=1))

result:

0     325
1    1030
2    1232
3     161
4    1250
dtype: int64

先看运行结果,我们可以看到,每一行求和的时候直接忽略文本字符类型,只对数字类型进行求和。就比如第一行的数据

   分类            货品  实体店销售量  线上销售量  成本   售价
0  水果            苹果      34    234  12   45

上面的325=34+234+12+45,,其他的行也是如此

2.2 对单独的一行或者一列进行操作

2.2.1 对某一列进行求和

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df['实体店销售量'].sum())

result:

982

2.2.2 对某一行进行求和

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.iloc[[0]].sum())

result:

分类         水果
货品         苹果
实体店销售量     34
线上销售量     234
成本         12
售价         45
dtype: object

当然,单独一行去求和似乎没卵用

2.3 对多行或者多列进行操作

2.3.1 对多列进行求和

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df[['实体店销售量', "线上销售量"]].sum())

result:

实体店销售量     982
线上销售量     1453
dtype: int64

2.3.2 对多行进行求和

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.iloc[[0, 1]].sum())

result:

分类         水果家电
货品        苹果电视机
实体店销售量       90
线上销售量      1018
成本           46
售价          201
dtype: object

总结

到此这篇关于Python pandas之求和运算和非空值个数统计的文章就介绍到这了,更多相关pandas求和运算和非空值个数内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python json.dumps中文乱码问题解决

    python json.dumps中文乱码问题解决

    这篇文章主要介绍了如何解决python中中文乱码问题和json.dumps中文乱码问题,需要的朋友可以参考下
    2021-05-05
  • Pandas中迭代DataFrame行的方法总结

    Pandas中迭代DataFrame行的方法总结

    Python是进行数据分析的一种很好的语言,主要是因为以数据为中心的Python包的奇妙生态系统,本文主要为大家介绍了如何在Pandas中迭代DataFrame中的行,有需要的可以参考下
    2023-09-09
  • Python中私有属性的定义方式

    Python中私有属性的定义方式

    这篇文章主要介绍了Python中私有属性的定义方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-03-03
  • python银行卡号码校验Luhn模10算法

    python银行卡号码校验Luhn模10算法

    这篇文章主要为大家介绍了python银行卡号码校验Luhn模10算法,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-05-05
  • 用Pytorch实现线性回归模型的步骤

    用Pytorch实现线性回归模型的步骤

    线性关系是一种非常简单的变量之间的关系,因变量和自变量在线性关系的情况下,可以使用线性回归算法对一个或多个因变量和自变量间的线性关系进行建模,本文主要介绍了如何利用Pytorch实现线性模型,需要的朋友可以参考下
    2024-01-01
  • python基础之序列操作

    python基础之序列操作

    这篇文章主要介绍了python序列操作,实例分析了Python中返回一个返回值与多个返回值的方法,需要的朋友可以参考下
    2021-10-10
  • django 自定义过滤器的实现

    django 自定义过滤器的实现

    这篇文章主要介绍了django 自定义过滤器的实现,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2019-02-02
  • pandas 对series和dataframe进行排序的实例

    pandas 对series和dataframe进行排序的实例

    今天小编就为大家分享一篇pandas 对series和dataframe进行排序的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-06-06
  • python 函数定位参数+关键字参数+inspect模块

    python 函数定位参数+关键字参数+inspect模块

    这篇文章主要介绍了python 函数定位参数+关键字参数+inspect模块,文章围绕主题展开详细的相关资料,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-05-05
  • Python中判断对象是否为空的方法

    Python中判断对象是否为空的方法

    在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精准区分,本文将系统梳理Python中“空”的判定逻辑,揭示常见误区,并提供实用解决方案,需要的朋友可以参考下
    2025-04-04

最新评论