Python特征降维知识点总结

 更新时间:2021年08月15日 11:45:17   作者:小妮浅浅  
在本篇文章里小编给大家整理了一篇关于Python特征降维知识点总结内容,有需要的朋友们可以学习参考下。

说明

1、PCA是最经典、最实用的降维技术,尤其在辅助图形识别中表现突出。

2、用来减少数据集的维度,同时保持数据集中对方差贡献最大的特征。

保持低阶主成分,而忽略高阶成分,低阶成分往往能保留数据的最重要部分。

实例

from sklearn.feature_selection import VarianceThreshold

# 特征选择  VarianceThreshold删除低方差的特征(删除差别不大的特征)
var = VarianceThreshold(threshold=1.0)   # 将方差小于等于1.0的特征删除。 默认threshold=0.0
data = var.fit_transform([[0, 2, 0, 3], [0, 1, 4, 3], [0, 1, 1, 3]])
 
print(data)
'''
[[0]
 [4]
 [1]]
'''

内容扩展:

python实现拉普拉斯降维

def laplaEigen(dataMat,k,t): 
 m,n=shape(dataMat) 
 W=mat(zeros([m,m])) 
 D=mat(zeros([m,m])) 
 for i in range(m): 
 k_index=knn(dataMat[i,:],dataMat,k) 
 for j in range(k): 
  sqDiffVector = dataMat[i,:]-dataMat[k_index[j],:] 
  sqDiffVector=array(sqDiffVector)**2 
  sqDistances = sqDiffVector.sum() 
  W[i,k_index[j]]=math.exp(-sqDistances/t) 
  D[i,i]+=W[i,k_index[j]] 
 L=D-W 
 Dinv=np.linalg.inv(D) 
 X=np.dot(D.I,L) 
 lamda,f=np.linalg.eig(X) 
return lamda,f 
def knn(inX, dataSet, k): 
 dataSetSize = dataSet.shape[0] 
 diffMat = tile(inX, (dataSetSize,1)) - dataSet 
 sqDiffMat = array(diffMat)**2 
 sqDistances = sqDiffMat.sum(axis=1) 
 distances = sqDistances**0.5 
 sortedDistIndicies = distances.argsort() 
return sortedDistIndicies[0:k] 
dataMat, color = make_swiss_roll(n_samples=2000) 
lamda,f=laplaEigen(dataMat,11,5.0) 
fm,fn =shape(f) 
print 'fm,fn:',fm,fn 
lamdaIndicies = argsort(lamda) 
first=0 
second=0 
print lamdaIndicies[0], lamdaIndicies[1] 
for i in range(fm): 
 if lamda[lamdaIndicies[i]].real>1e-5: 
 print lamda[lamdaIndicies[i]] 
 first=lamdaIndicies[i] 
 second=lamdaIndicies[i+1] 
 break 
print first, second 
redEigVects = f[:,lamdaIndicies] 
fig=plt.figure('origin') 
ax1 = fig.add_subplot(111, projection='3d') 
ax1.scatter(dataMat[:, 0], dataMat[:, 1], dataMat[:, 2], c=color,cmap=plt.cm.Spectral) 
fig=plt.figure('lowdata') 
ax2 = fig.add_subplot(111) 
ax2.scatter(f[:,first], f[:,second], c=color, cmap=plt.cm.Spectral) 
plt.show() 

到此这篇关于Python特征降维知识点总结的文章就介绍到这了,更多相关Python特征降维如何理解内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python实现蒙特卡洛算法小实验过程详解

    Python实现蒙特卡洛算法小实验过程详解

    这篇文章主要介绍了Python实现基于蒙特卡洛算法过程详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-07-07
  • python操作xml文件详细介绍

    python操作xml文件详细介绍

    这篇文章主要介绍了python操作xml文件详细介绍,着重介绍了获取XML标签的属性和值的方法,需要的朋友可以参考下
    2014-06-06
  • pip install -r requirements.txt时遇到报错自动跳过

    pip install -r requirements.txt时遇到报错自动跳过

    本文主要介绍了pip install -r requirements.txt时遇到报错自动跳过,下面就来介绍了几种解决方法,具有一定的参考价值,感兴趣的可以了解一下
    2025-03-03
  • 支持PyTorch的einops张量操作神器用法示例详解

    支持PyTorch的einops张量操作神器用法示例详解

    这篇文章主要为大家介绍了支持PyTorch的einops张量操作神器用法示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步早日升职加薪
    2021-11-11
  • 如何使用celery进行异步处理和定时任务(django)

    如何使用celery进行异步处理和定时任务(django)

    文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中处理后台任务,如发送邮件、视频转码等,而不阻塞Web请求,文章还提到了启动Celery worker和beat的命令以及任务和定时任务的执行效果
    2025-01-01
  • Python基于QQ邮箱实现SSL发送

    Python基于QQ邮箱实现SSL发送

    这篇文章主要介绍了Python基于QQ邮箱实现SSL发送,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-04-04
  • 在python2.7中用numpy.reshape 对图像进行切割的方法

    在python2.7中用numpy.reshape 对图像进行切割的方法

    今天小编就为大家分享一篇在python2.7中用numpy.reshape 对图像进行切割的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-12-12
  • 基于python的列表list和集合set操作

    基于python的列表list和集合set操作

    今天小编就为大家分享一篇基于python的列表list和集合set操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-11-11
  • Python控制台输出俄罗斯方块的方法实例

    Python控制台输出俄罗斯方块的方法实例

    这篇文章主要给大家介绍了关于Python控制台输出俄罗斯方块的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-04-04
  • Pandas日期处理之生成工作日与节假日

    Pandas日期处理之生成工作日与节假日

    Python中的Pandas 提供了许多日期处理功能,使得处理时间序列数据变得容易。本文将介绍如何使用 Pandas 生成工作日和节假日,感兴趣的小伙伴可以收藏一下
    2023-05-05

最新评论