OpenCV半小时掌握基本操作之图像轮廓

 更新时间:2021年09月01日 14:52:08   作者:我是小白呀  
这篇文章主要介绍了OpenCV基本操作之图像轮廓,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

【OpenCV】⚠️高手勿入! 半小时学会基本操作 ⚠️ 图像轮廓

概述

OpenCV 是一个跨平台的计算机视觉库, 支持多语言, 功能强大. 今天小白就带大家一起携手走进 OpenCV 的世界.

在这里插入图片描述

图像轮廓

cv2.findContours可以帮助我们查找轮廓.

格式:

cv2.findContours(image, mode, method, contours=None, hierarchy=None, offset=None)

参数:

image: 需要查找轮廓的图片

mode: 模式

  • RETR_EXTERNAL: 只检测最外面的轮廓
  • RETR_LIST: 检测所有的轮廓, 并将其保存到一条链表中
  • RETR_CCOMP: 检索所有的轮廓, 将他们组织为两层: 顶部是各分部法外部边界, 第二层是空洞的边界
  • RRTR_TREE: 检索所有的轮廓, 并重构嵌套轮廓的整个层次

method: 轮廓逼近的方法

  • CHAIN_APPROX_NONE: 以 Freeman 链码的方式输出轮廓, 所有其他方法输出多边形 (定点的序列)
  • CHAIN_APPROX_SIMPLE: 压缩水平的, 垂直的和斜的部分, 只保留他们的终点部分

返回值:

  • contours:轮廓本身
  • hierarchy: 轮廓的对应编号

原图:

在这里插入图片描述

绘制轮廓

cv2.drawContours可以实现轮廓绘制.

格式:

cv2.drawContours(image, contours, contourIdx, color, thickness=None, lineType=None, hierarchy=None, maxLevel=None, offset=None): 

参数:

  • image: 需要绘制轮廓的图片
  • contours: 轮廓
  • color: 颜色
  • thickness: 轮廓粗细

在这里插入图片描述

绘制所有轮廓:

# 读取图片
img = cv2.imread("contours.jpg")

# 转换成灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 二值化
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)

# 获取轮廓 (所有)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)

# 绘制轮廓
draw_img = img.copy()
res = cv2.drawContours(draw_img, contours, -1, (0, 0, 255), 2)

# 图片展示
cv2.imshow("res", res)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

绘制单个轮廓:

# 读取图片
img = cv2.imread("contours.jpg")

# 转换成灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 二值化
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)

# 获取轮廓
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)

# 绘制轮廓 (单一)
draw_img = img.copy()
res = cv2.drawContours(draw_img, contours, 0, (0, 0, 255), 2)

# 图片展示
cv2.imshow("res", res)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

轮廓特征

# 获取轮廓
cnt = contours[0]  # 取第一个轮廓

# 面积
area = cv2.contourArea(cnt)
print("轮廓面积:", area)

# 周长, True表示合并
perimeter = cv2.arcLength(cnt, True)
print("轮廓周长:", perimeter)

输出结果:

轮廓面积: 8500.5
轮廓周长: 437.9482651948929

轮廓近似

原图:

在这里插入图片描述

代码:

# 读取图片
img = cv2.imread("contours2.jpg")

# 转换成灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 二值化
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)

# 获取轮廓
contours, hieratchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)

# 绘制轮廓
draw_img = img.copy()
res = cv2.drawContours(draw_img, contours, 0, (0, 0, 255), 2)

# 图片展示
cv2.imshow("res", res)
cv2.waitKey(0)
cv2.destroyAllWindows()

# 取外围轮廓
cnt = contours[0]

# 轮廓近似
epsilon = 0.1 * cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, epsilon, True)

# 绘制轮廓
draw_img = img.copy()
res = cv2.drawContours(draw_img, [approx], -1, (0, 0, 255), 2)

# 图片展示
cv2.imshow("res", res)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

直接绘制轮廓:

在这里插入图片描述

轮廓近似:

在这里插入图片描述

边界矩形

cv2.boundingRect可以帮助我们得到边界矩形的位置和长宽.

例子:

# 读取图片
img = cv2.imread("contours.jpg")

# 转换成灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 二值化
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)

# 获取轮廓
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)

# 获取第一个轮廓
cnt = contours[0]

# 获取正方形坐标长宽
x, y, w, h = cv2.boundingRect(cnt)

# 图片展示
img = cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.imshow("img", img)
cv2.waitKey(0)
cv2.destroyAllWindows()

# 轮廓面积
area = cv2.contourArea(cnt)

# 边界矩形面积
rect_area = w * h

# 占比
extent = area / rect_area
print('轮廓面积与边界矩形比:', extent)

输出结果:

轮廓面积与边界矩形比: 0.5154317244724715

在这里插入图片描述

外接圆

cv2.minEnclosingCircle可以帮助我们得到外接圆的位置和半径.

例子:

# 读取图片
img = cv2.imread("contours.jpg")

# 转换成灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 二值化
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)

# 获取轮廓
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)

# 获取第一个轮廓
cnt = contours[0]

# 获取外接圆
(x, y), radius = cv2.minEnclosingCircle(cnt)

# 获取图片
img = cv2.circle(img, (int(x), int(y)), int(radius), (255, 100, 0), 2)

# 图片展示
cv2.imshow("img", img)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

到此这篇关于OpenCV半小时掌握基本操作之图像轮廓的文章就介绍到这了,更多相关OpenCV图像轮廓内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python条件语句与循环语句

    Python条件语句与循环语句

    这篇文章主要介绍了Python条件语句与循环语句,条件语句就是通过指定的表达式的运行结果来判断当前是执行还是跳过某些指定的语句块,循环语句就是对某些语句的重复执行,这个重复执行是通过指定表达式来控制的,下面来看具体内容及续航管案例吧,需要的朋友可以参考一下
    2021-11-11
  • Django中多种重定向方法使用详解

    Django中多种重定向方法使用详解

    这篇文章主要介绍了Django中多种重定向方法使用详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-07-07
  • Python首次安装后运行报错(0xc000007b)的解决方法

    Python首次安装后运行报错(0xc000007b)的解决方法

    最近在安装完Python后运行发现居然报错了,错误代码是0xc000007b,于是通过往上查找发现是因为首次安装Python缺乏VC++库的原因,下面通过这篇文章看看如何解决这个问题吧。
    2016-10-10
  • Python XML RPC服务器端和客户端实例

    Python XML RPC服务器端和客户端实例

    这篇文章主要介绍了Python XML RPC服务器端和客户端实例,本文给出了实现代码以及运行效果,需要的朋友可以参考下
    2014-11-11
  • python循环之彩色圆环实现示例

    python循环之彩色圆环实现示例

    这篇文章主要为大家介绍了python循环之彩色圆环实现示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-06-06
  • opencv 阈值分割的具体使用

    opencv 阈值分割的具体使用

    这篇文章主要介绍了opencv 阈值分割的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-07-07
  • python使用Flask操作mysql实现登录功能

    python使用Flask操作mysql实现登录功能

    这篇文章主要介绍了python使用Flask操作mysql实现登录功能,代码简单易懂,非常不错,具有一定的参考借鉴价值,需要的朋友可以参考下
    2018-05-05
  • Python中subprocess.run()执行命令、检查状态与结果处理深入理解

    Python中subprocess.run()执行命令、检查状态与结果处理深入理解

    这篇文章主要介绍了Python中subprocess.run()执行命令、检查状态与结果处理的相关资料,文中通过代码介绍的非常详细,对大家的学习或者工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2025-04-04
  • python 类的继承 实例方法.静态方法.类方法的代码解析

    python 类的继承 实例方法.静态方法.类方法的代码解析

    这篇文章主要介绍了python 类的继承 实例方法.静态方法.类方法的代码解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-08-08
  • python 实现docx与doc文件的互相转换

    python 实现docx与doc文件的互相转换

    这篇文章主要介绍了python 实现docx与doc文件的互相转换操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03

最新评论