OpenCV半小时掌握基本操作之边缘检测

 更新时间:2021年09月01日 15:29:38   作者:我是小白呀  
这篇文章主要介绍了OpenCV基本操作之边缘检测,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

【OpenCV】⚠️高手勿入! 半小时学会基本操作⚠️ 边缘检测

概述

OpenCV 是一个跨平台的计算机视觉库, 支持多语言, 功能强大. 今天小白就带大家一起携手走进 OpenCV 的世界. (第 12 课)

在这里插入图片描述

Scharr 算子

Scharr 算子和 Sobel 算子基本一样. 只是卷积核系数不同. Scharr 算子对边界更加敏感, 也更容易误判.

卷积核参数:

在这里插入图片描述

例子:

# Scharr 算子
scharr_x = cv2.Scharr(img, cv2.CV_64F, 1, 0)
scharr_y = cv2.Scharr(img, cv2.CV_64F, 0, 1)

# 取绝对值
scharr_x = cv2.convertScaleAbs(scharr_x)
scharr_y = cv2.convertScaleAbs(scharr_y)

# 融合
scharr_xy = cv2.addWeighted(scharr_x, 0.5, scharr_y, 0.5, 0)

# 展示图片
cv2.imshow("scharr_xy", scharr_xy)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

Laplacian 算子

拉普拉斯算子 (Laplacian) 是图像二阶空间导数的二维向同性测度. 拉普拉斯算子可以突出图像中强度发生快速变化的区域, 因此常用在边缘检测任务当中.

在这里插入图片描述

在进行 Laplacian 操作之前通常需要先用高斯平滑滤波器 (Gaussian Blur) 降低 Laplacian 算子对于噪声的敏感性.

卷积核参数:

在这里插入图片描述

例子:

# 读取图片, 并准换成灰度图
img = cv2.imread("Mona_Lisa.jpg", cv2.IMREAD_GRAYSCALE)

# 高斯滤波器 (3 X 3)
img = cv2.GaussianBlur(img, (3, 3), sigmaX=0.1)

# Laplacian 算子
laplacian = cv2.Laplacian(img, cv2.CV_64F)

# 取绝对值
laplacian = cv2.convertScaleAbs(laplacian)

# 展示图片
cv2.imshow("laplacian", laplacian)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

注: Sigma 值越小, 模板的中心系数就越大, 周围的系数较小, 平滑的效果就不是很明显.

Sobel vs Scharr vs Laplacian

在这里插入图片描述

Canny 边缘检测

Canny 边缘检测是非常流行的一种边缘检测算法, 由 John Canny 在 1986 年提出.

步骤:

  1. 使用高斯滤波器, 平滑图像, 消除噪声
  2. 计算图像中每个像素点的梯度强度和方向
  3. 使用没极大值抑制 (Non-Maximum Suppression) 消除边缘检测带来的杂散响应
  4. 使用双阈值检测 (Double Threshold) 来确定真实和潜在的边缘
  5. 通过抑制孤立的弱边缘最终完成边缘检测

高斯滤波器

在这里插入图片描述

梯度和方向

在这里插入图片描述

非极大值抑制

在这里插入图片描述

在这里插入图片描述

双阈值检测

在这里插入图片描述

例子

# 读取图片, 并转换成灰度图
img = cv2.imread("Mona_Lisa.jpg", cv2.IMREAD_GRAYSCALE)

# Canny边缘检测
out1 = cv2.Canny(img, 50, 150)
out2 = cv2.Canny(img, 100, 150)

# 合并
canny = np.hstack((out1, out2))

# 展示图片
cv2.imshow("canny", canny)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

到此这篇关于OpenCV半小时掌握基本操作之边缘检测的文章就介绍到这了,更多相关OpenCV边缘检测内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python入门教程(十八)Python的For循环

    Python入门教程(十八)Python的For循环

    这篇文章主要介绍了Python入门教程(十八)Python的For循环,Python是一门非常强大好用的语言,也有着易上手的特性,本文为入门教程,需要的朋友可以参考下
    2023-04-04
  • Python实现贪心算法的示例

    Python实现贪心算法的示例

    这篇文章主要介绍了Python实现贪心算法的示例,帮助大家更好的理解和学习使用python,感兴趣的朋友可以了解下
    2021-04-04
  • python抓取文件夹的所有文件

    python抓取文件夹的所有文件

    这篇文章主要为大家详细介绍了python抓取文件夹的所有文件,包括子文件夹和子文件夹的文件,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-02-02
  • 教你用Python实现Excel表格处理

    教你用Python实现Excel表格处理

    今天教各位小伙伴怎么用Python处理excel,文中有非常详细的代码示例及相关知识总结,对正在学习python的小伙伴们很有帮助,需要的朋友可以参考下
    2021-05-05
  • 使用Python编写vim插件的简单示例

    使用Python编写vim插件的简单示例

    这篇文章主要介绍了使用Python编写vim插件的简单教程,文中举了一个获取reddit首页信息并显示在缓冲区中的例子,需要的朋友可以参考下
    2015-04-04
  • Python量化交易实战之使用Resample函数转换“日K”数据

    Python量化交易实战之使用Resample函数转换“日K”数据

    resample函数是Python数据分析库Pandas的方法函数,它主要用于转换时间序列的频次,今天通过本文给大家分享python使用Resample函数转换时间序列的相关知识,感兴趣的朋友一起看看吧
    2021-06-06
  • python shutil.move移动文件或目录方式

    python shutil.move移动文件或目录方式

    `shutil.move()`函数可以移动文件或目录,移动目录时,如果目标目录不存在,会创建该目录并将源目录内容移动到新目录;如果目标目录存在,则将源目录移动到目标目录下,移动文件时,如果目标路径是目录,则将文件移动到该目录下并重命名
    2024-12-12
  • python实现FFT快速傅立叶变换算法案例

    python实现FFT快速傅立叶变换算法案例

    FFT(快速傅里叶变换)是计算DFT及其逆变换的一种算法,其基本思想是利用DFT的对称性和周期性,通过分而治之的策略将DFT分解为更小的DFT,从而降低计算复杂度,FFT的算法步骤包括选择分解、重新排序、蝶形运算和逐层计算,在Python中
    2024-10-10
  • python基础之集合

    python基础之集合

    这篇文章主要介绍了python集合,实例分析了Python中返回一个返回值与多个返回值的方法,需要的朋友可以参考下
    2021-10-10
  • Python 2.x如何设置命令执行的超时时间实例

    Python 2.x如何设置命令执行的超时时间实例

    这篇文章主要给大家介绍了关于Python 2.x如何设置命令执行超时时间的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考借鉴,下面来一起看看吧。
    2017-10-10

最新评论