python爬虫Scrapy框架:媒体管道原理学习分析

 更新时间:2021年09月01日 17:13:54   作者:别呀  
这篇文章主要介绍了python爬虫Scrapy框架:媒体管道原理学习分析,有需要的朋友可以借鉴参考,希望可以对广大一同学习的读者朋友有所帮助

一、媒体管道

1.1、媒体管道的特性

媒体管道实现了以下特性:

  • 避免重新下载最近下载的媒体
  • 指定存储位置(文件系统目录,Amazon S3 bucket,谷歌云存储bucket)

图像管道具有一些额外的图像处理功能:

  • 将所有下载的图片转换为通用格式(JPG)和模式(RGB)
  • 生成缩略图
  • 检查图像的宽度/高度,进行最小尺寸过滤

1.2、媒体管道的设置

ITEM_PIPELINES = {'scrapy.pipelines.images.ImagesPipeline': 120}      启用
FILES_STORE = '/path/to/valid/dir'		   文件管道存放位置
IMAGES_STORE = '/path/to/valid/dir'		  图片管道存放位置
FILES_URLS_FIELD = 'field_name_for_your_files_urls'    自定义文件url字段
FILES_RESULT_FIELD = 'field_name_for_your_processed_files'   自定义结果字段
IMAGES_URLS_FIELD = 'field_name_for_your_images_urls'         自定义图片url字段
IMAGES_RESULT_FIELD = 'field_name_for_your_processed_images'      结果字段
FILES_EXPIRES = 90   文件过期时间   默认90天
IMAGES_EXPIRES = 90    图片过期时间   默认90天
IMAGES_THUMBS = {'small': (50, 50), 'big':(270, 270)}     缩略图尺寸
IMAGES_MIN_HEIGHT = 110     过滤最小高度
IMAGES_MIN_WIDTH = 110      过滤最小宽度
MEDIA_ALLOW_REDIRECTS = True    是否重定向

二、ImagesPipeline类简介

#解析settings里的配置字段
def __init__(self, store_uri, download_func=None, settings=None)
#图片下载
def image_downloaded(self, response, request, info)
#图片获取   图片大小的过滤  #缩略图的生成
def get_images(self, response, request, info)
#转化图片格式
def convert_image(self, image, size=None)
#生成媒体请求  可重写
def get_media_requests(self, item, info)
	return [Request(x) for x in item.get(self.images_urls_field, [])] #得到图片url  变成请求  发给引擎
#此方法获取文件名  进行改写
def item_completed(self, results, item, info)
#文件路径 
def file_path(self, request, response=None, info=None)
#缩略图的存储路径
def thumb_path(self, request, thumb_id, response=None, info=None):

三、小案例:使用图片管道爬取百度图片

(当然不使用图片管道的话也是可以爬取百度图片的,但这还需要我们去分析网页的代码,还是有点麻烦,使用图片管道就可以省去这个步骤了)

3.1、spider文件

注意:由于需要添加所有的请求头,所以我们要重写start_requests函数

import re
import scrapy
from ..items import DbimgItem
class DbSpider(scrapy.Spider):
    name = 'db'
    # allowed_domains = ['xxx.com']
    start_urls = ['https://image.baidu.com/search/index?tn=baiduimage&ipn=r&ct=201326592&cl=2&lm=-1&st=-1&fm=index&fr=&hs=0&xthttps=111110&sf=1&fmq=&pv=&ic=0&nc=1&z=&se=1&showtab=0&fb=0&width=&height=&face=0&istype=2&ie=utf-8&word=%E7%8B%97&oq=%E7%8B%97&rsp=-1']
    def start_requests(self):  #因为需要添加所有的请求头,所以我们要重写start_requests函数
        # url = 'https://image.baidu.com/search/index?tn=baiduimage&ipn=r&ct=201326592&cl=2&lm=-1&st=-1&fm=index&fr=&hs=0&xthttps=111110&sf=1&fmq=&pv=&ic=0&nc=1&z=&se=1&showtab=0&fb=0&width=&height=&face=0&istype=2&ie=utf-8&word=%E7%8B%97&oq=%E7%8B%97&rsp=-1'
        headers = {
            "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9",
            "Accept-Encoding": "gzip, deflate, br",
            "Accept-Language": "zh-CN,zh;q=0.9",
            "Cache-Control": "max-age=0",
            "Connection": "keep-alive",
            "Cookie": "BIDUPSID=4B61D634D704A324E3C7E274BF11F280; PSTM=1624157516; BAIDUID=4B61D634D704A324C7EA5BA47BA5886E:FG=1; __yjs_duid=1_f7116f04cddf75093b9236654a2d70931624173362209; BAIDUID_BFESS=101022AEE931E08A9B9A3BA623709CFE:FG=1; BDORZ=B490B5EBF6F3CD402E515D22BCDA1598; BDRCVFR[dG2JNJb_ajR]=mk3SLVN4HKm; cleanHistoryStatus=0; H_PS_PSSID=34099_33969_34222_31660_34226_33848_34113_34073_33607_34107_34134_34118_26350_22159; delPer=0; PSINO=6; BA_HECTOR=24ak842ka421210koq1gdtj070r; BDRCVFR[X_XKQks0S63]=mk3SLVN4HKm; userFrom=www.baidu.com; firstShowTip=1; indexPageSugList=%5B%22%E7%8B%97%22%2C%22%E7%8C%AB%E5%92%AA%22%2C%22%E5%B0%8F%E9%80%8F%E6%98%8E%22%5D; ab_sr=1.0.1_OGYwMTZiMjg5ZTNiYmUxODIxOTgyYTllZGMyMzhjODE2ZWE5OGY4YmEyZWVjOGZhOWIxM2NlM2FhZTQxMmFjODY0OWZiNzQxMjVlMWIyODVlZWFiZjY2NTQyMTZhY2NjNTM5NDNmYTFmZjgxMTlkOGYxYTUzYTIzMzA0NDE3MGNmZDhkYTBkZmJiMmJhZmFkZDNmZTM1ZmI2MWZkNzYyYQ==",
            "Host": "image.baidu.com",
            "Referer": "https://image.baidu.com/",
            "sec-ch-ua": '" Not;A Brand";v="99", "Google Chrome";v="91", "Chromium";v="91"',
            "sec-ch-ua-mobile": "?0",
            "Sec-Fetch-Dest": "document",
            "Sec-Fetch-Mode": "navigate",
            "Sec-Fetch-Site": "same-origin",
            "Sec-Fetch-User": "?1",
            "Upgrade-Insecure-Requests": "1",
            "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.106 Safari/537.36"
        }
        for url in self.start_urls:
            yield scrapy.Request(url,headers=headers,callback=self.parse,dont_filter=True)
    def parse(self, response):
        img_urls = re.findall('"thumbURL":"(.*?)"', response.text)
        # print(img_urls)
        item = DbimgItem()
        item['image_urls'] = img_urls
        yield item

3.2、items文件

import scrapy
class DbimgItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    image_urls = scrapy.Field()

3.3、settings文件

ROBOTSTXT_OBEY = False
#打开我们写的管道
ITEM_PIPELINES = {
   # 'dbimg.pipelines.DbimgPipeline': 300,
    'dbimg.pipelines.ImgPipe': 300,
}
#图片存放位置
IMAGES_STORE = 'D:/python test/爬虫/scrapy6/dbimg/imgs'

3.4、pipelines文件

import os
from itemadapter import ItemAdapter
from scrapy.pipelines.images import ImagesPipeline
import settings
"""
def item_completed(self, results, item, info):
    with suppress(KeyError):
        ItemAdapter(item)[self.images_result_field] = [x for ok, x in results if ok]
    return item
"""
class ImgPipe(ImagesPipeline):
    num=0
    #重写此函数修改获取的图片的名字  不然图片名称就是一串数字字母
    def item_completed(self, results, item, info):
        images_path = [x['path'] for ok, x in results if ok]
        #print('results: ',results)   先查看下results的数据格式,然后才能获取到我们需要的值
        for image_path in images_path:
            os.rename(settings.IMAGES_STORE + "/" + image_path, settings.IMAGES_STORE + "/" + str(self.num) + ".jpg")
            self.num += 1

结果:

以上就是python爬虫Scrapy框架:媒体管道原理学习分析的详细内容,更多关于python爬虫Scrapy框架的资料请关注脚本之家其它相关文章!

相关文章

  • Python大批量写入数据(百万级别)的方法

    Python大批量写入数据(百万级别)的方法

    这篇文章主要给大家介绍了关于Python大批量写入数据(百万级别)的相关资料,在日常处理数据的过程中,我们都有批量写入数据的需求,文中给出了详细的示例代码,需要的朋友可以参考下
    2023-07-07
  • Pytorch神经网络参数管理方法详细讲解

    Pytorch神经网络参数管理方法详细讲解

    这篇文章主要介绍了Pytorch神经网络参数管理方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧
    2023-05-05
  • Python必备技能之debug调试教程详解

    Python必备技能之debug调试教程详解

    这篇文章主要为大家详细介绍了Python初学者必须要学会的技能——在Python中进行debug操作,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下
    2023-03-03
  • Python函数式编程实现登录注册功能

    Python函数式编程实现登录注册功能

    这篇文章主要为大家详细介绍了Python函数式编程实现登录注册功能,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-02-02
  • Python连接达梦数据库的实现示例

    Python连接达梦数据库的实现示例

    本文主要介绍了Python连接达梦数据库的实现示例,dmPython是DM提供的依据Python DB API version 2.0中API使用规定而开发的数据库访问接口,使Python应用程序能够对DM数据库进行访问
    2023-12-12
  • Python 基于TCP 传输协议的网络通信实现方法

    Python 基于TCP 传输协议的网络通信实现方法

    网络编程指在网络环境中,如何实现不在同一物理位置中的计算机之间进行数据通信,本文重点给大家介绍Python 基于TCP 传输协议的网络通信实现方法,感兴趣的朋友跟随小编一起看看吧
    2022-02-02
  • python连接access数据库两种方式总结

    python连接access数据库两种方式总结

    这篇文章主要介绍了python连接access数据库两种方式的相关资料,SQLAlchemy使用access方言进行连接,而pyodbc则通过pyodbc模块实现连接,文章还提供了连接代码示例,需要的朋友可以参考下
    2025-02-02
  • Python利用Bokeh进行数据可视化的教程分享

    Python利用Bokeh进行数据可视化的教程分享

    Bokeh是Python中的数据可视化库,提供高性能的交互式图表和绘图。本文将利用Bokeh绘制一些可视化图表,文中的示例代码讲解详细,感兴趣的可以了解一下
    2022-08-08
  • Python 编程操作连载之字符串,列表,字典和集合处理

    Python 编程操作连载之字符串,列表,字典和集合处理

    这篇文章主要介绍了Python 编程操作连载之字符串,列表,字典和集合处理,文章围绕主题相关资料展开详细的内容介绍,需要的朋友可参考一下下面文章内容
    2022-06-06
  • 一文教你Python如何创建属于自己的IP池

    一文教你Python如何创建属于自己的IP池

    这篇文章主要为大家详细介绍了python如何创建属于自己的IP池,文中的示例代码讲解详细,对我们学习或工作有一定参考价值,需要的可以参考一下
    2022-04-04

最新评论