PyTorch一小时掌握之神经网络分类篇

 更新时间:2021年09月07日 17:09:52   作者:我是小白呀  
这篇文章主要介绍了PyTorch一小时掌握之神经网络分类篇,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

概述

对于 MNIST 手写数据集的具体介绍, 我们在 TensorFlow 中已经详细描述过, 在这里就不多赘述. 有兴趣的同学可以去看看之前的文章: https://www.jb51.net/article/222183.htm

在上一节的内容里, 我们用 PyTorch 实现了回归任务, 在这一节里, 我们将使用 PyTorch 来解决分类任务.

导包

import torchvision
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt

设置超参数

# 设置超参数
n_epochs = 3
batch_size_train = 64
batch_size_test = 1000
learning_rate = 0.01
momentum = 0.5
log_interval = 10
random_seed = 1
torch.manual_seed(random_seed)

读取数据

# 数据读取
train_loader = torch.utils.data.DataLoader(
    torchvision.datasets.MNIST('./data/', train=True, download=True,
                               transform=torchvision.transforms.Compose([
                                   torchvision.transforms.ToTensor(),
                                   torchvision.transforms.Normalize(
                                       (0.1307,), (0.3081,))
                               ])),
    batch_size=batch_size_train, shuffle=True)
    
test_loader = torch.utils.data.DataLoader(
    torchvision.datasets.MNIST('./data/', train=False, download=True,
                               transform=torchvision.transforms.Compose([
                                   torchvision.transforms.ToTensor(),
                                   torchvision.transforms.Normalize(
                                       (0.1307,), (0.3081,))
                               ])),
    batch_size=batch_size_test, shuffle=True)

examples = enumerate(test_loader)
batch_idx, (example_data, example_targets) = next(examples)

# 调试输出
print(example_targets)
print(example_data.shape)

输出结果:
tensor([7, 6, 7, 5, 6, 7, 8, 1, 1, 2, 4, 1, 0, 8, 4, 4, 4, 9, 8, 1, 3, 3, 8, 6,
2, 7, 5, 1, 6, 5, 6, 2, 9, 2, 8, 4, 9, 4, 8, 6, 7, 7, 9, 8, 4, 9, 5, 3,
1, 0, 9, 1, 7, 3, 7, 0, 9, 2, 5, 1, 8, 9, 3, 7, 8, 4, 1, 9, 0, 3, 1, 2,
3, 6, 2, 9, 9, 0, 3, 8, 3, 0, 8, 8, 5, 3, 8, 2, 8, 5, 5, 7, 1, 5, 5, 1,
0, 9, 7, 5, 2, 0, 7, 6, 1, 2, 2, 7, 5, 4, 7, 3, 0, 6, 7, 5, 1, 7, 6, 7,
2, 1, 9, 1, 9, 2, 7, 6, 8, 8, 8, 4, 6, 0, 0, 2, 3, 0, 1, 7, 8, 7, 4, 1,
3, 8, 3, 5, 5, 9, 6, 0, 5, 3, 3, 9, 4, 0, 1, 9, 9, 1, 5, 6, 2, 0, 4, 7,
3, 5, 8, 8, 2, 5, 9, 5, 0, 7, 8, 9, 3, 8, 5, 3, 2, 4, 4, 6, 3, 0, 8, 2,
7, 0, 5, 2, 0, 6, 2, 6, 3, 6, 6, 7, 9, 3, 4, 1, 6, 2, 8, 4, 7, 7, 2, 7,
4, 2, 4, 9, 7, 7, 5, 9, 1, 3, 0, 4, 4, 8, 9, 6, 6, 5, 3, 3, 2, 3, 9, 1,
1, 4, 4, 8, 1, 5, 1, 8, 8, 0, 7, 5, 8, 4, 0, 0, 0, 6, 3, 0, 9, 0, 6, 6,
9, 8, 1, 2, 3, 7, 6, 1, 5, 9, 3, 9, 3, 2, 5, 9, 9, 5, 4, 9, 3, 9, 6, 0,
3, 3, 8, 3, 1, 4, 1, 4, 7, 3, 1, 6, 8, 4, 7, 7, 3, 3, 6, 1, 3, 2, 3, 5,
9, 9, 9, 2, 9, 0, 2, 7, 0, 7, 5, 0, 2, 6, 7, 3, 7, 1, 4, 6, 4, 0, 0, 3,
2, 1, 9, 3, 5, 5, 1, 6, 4, 7, 4, 6, 4, 4, 9, 7, 4, 1, 5, 4, 8, 7, 5, 9,
2, 9, 4, 0, 8, 7, 3, 4, 2, 7, 9, 4, 4, 0, 1, 4, 1, 2, 5, 2, 8, 5, 3, 9,
1, 3, 5, 1, 9, 5, 3, 6, 8, 1, 7, 9, 9, 9, 9, 9, 2, 3, 5, 1, 4, 2, 3, 1,
1, 3, 8, 2, 8, 1, 9, 2, 9, 0, 7, 3, 5, 8, 3, 7, 8, 5, 6, 4, 1, 9, 7, 1,
7, 1, 1, 8, 6, 7, 5, 6, 7, 4, 9, 5, 8, 6, 5, 6, 8, 4, 1, 0, 9, 1, 4, 3,
5, 1, 8, 7, 5, 4, 6, 6, 0, 2, 4, 2, 9, 5, 9, 8, 1, 4, 8, 1, 1, 6, 7, 5,
9, 1, 1, 7, 8, 7, 5, 5, 2, 6, 5, 8, 1, 0, 7, 2, 2, 4, 3, 9, 7, 3, 5, 7,
6, 9, 5, 9, 6, 5, 7, 2, 3, 7, 2, 9, 7, 4, 8, 4, 9, 3, 8, 7, 5, 0, 0, 3,
4, 3, 3, 6, 0, 1, 7, 7, 4, 6, 3, 0, 8, 0, 9, 8, 2, 4, 2, 9, 4, 9, 9, 9,
7, 7, 6, 8, 2, 4, 9, 3, 0, 4, 4, 1, 5, 7, 7, 6, 9, 7, 0, 2, 4, 2, 1, 4,
7, 4, 5, 1, 4, 7, 3, 1, 7, 6, 9, 0, 0, 7, 3, 6, 3, 3, 6, 5, 8, 1, 7, 1,
6, 1, 2, 3, 1, 6, 8, 8, 7, 4, 3, 7, 7, 1, 8, 9, 2, 6, 6, 6, 2, 8, 8, 1,
6, 0, 3, 0, 5, 1, 3, 2, 4, 1, 5, 5, 7, 3, 5, 6, 2, 1, 8, 0, 2, 0, 8, 4,
4, 5, 0, 0, 1, 5, 0, 7, 4, 0, 9, 2, 5, 7, 4, 0, 3, 7, 0, 3, 5, 1, 0, 6,
4, 7, 6, 4, 7, 0, 0, 5, 8, 2, 0, 6, 2, 4, 2, 3, 2, 7, 7, 6, 9, 8, 5, 9,
7, 1, 3, 4, 3, 1, 8, 0, 3, 0, 7, 4, 9, 0, 8, 1, 5, 7, 3, 2, 2, 0, 7, 3,
1, 8, 8, 2, 2, 6, 2, 7, 6, 6, 9, 4, 9, 3, 7, 0, 4, 6, 1, 9, 7, 4, 4, 5,
8, 2, 3, 2, 4, 9, 1, 9, 6, 7, 1, 2, 1, 1, 2, 6, 9, 7, 1, 0, 1, 4, 2, 7,
7, 8, 3, 2, 8, 2, 7, 6, 1, 1, 9, 1, 0, 9, 1, 3, 9, 3, 7, 6, 5, 6, 2, 0,
0, 3, 9, 4, 7, 3, 2, 9, 0, 9, 5, 2, 2, 4, 1, 6, 3, 4, 0, 1, 6, 9, 1, 7,
0, 8, 0, 0, 9, 8, 5, 9, 4, 4, 7, 1, 9, 0, 0, 2, 4, 3, 5, 0, 4, 0, 1, 0,
5, 8, 1, 8, 3, 3, 2, 1, 2, 6, 8, 2, 5, 3, 7, 9, 3, 6, 2, 2, 6, 2, 7, 7,
6, 1, 8, 0, 3, 5, 7, 5, 0, 8, 6, 7, 2, 4, 1, 4, 3, 7, 7, 2, 9, 3, 5, 5,
9, 4, 8, 7, 6, 7, 4, 9, 2, 7, 7, 1, 0, 7, 2, 8, 0, 3, 5, 4, 5, 1, 5, 7,
6, 7, 3, 5, 3, 4, 5, 3, 4, 3, 2, 3, 1, 7, 4, 4, 8, 5, 5, 3, 2, 2, 9, 5,
8, 2, 0, 6, 0, 7, 9, 9, 6, 1, 6, 6, 2, 3, 7, 4, 7, 5, 2, 9, 4, 2, 9, 0,
8, 1, 7, 5, 5, 7, 0, 5, 2, 9, 5, 2, 3, 4, 6, 0, 0, 2, 9, 2, 0, 5, 4, 8,
9, 0, 9, 1, 3, 4, 1, 8, 0, 0, 4, 0, 8, 5, 9, 8])
torch.Size([1000, 1, 28, 28])

可视化展示

# 画图 (前6个)
fig = plt.figure()
for i in range(6):
    plt.subplot(2, 3, i + 1)
    plt.tight_layout()
    plt.imshow(example_data[i][0], cmap='gray', interpolation='none')
    plt.title("Ground Truth: {}".format(example_targets[i]))
    plt.xticks([])
    plt.yticks([])
plt.show()

输出结果:

在这里插入图片描述

建立模型

# 创建model
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x)


network = Net()
optimizer = optim.SGD(network.parameters(), lr=learning_rate,
                      momentum=momentum)

训练模型

# 训练
train_losses = []
train_counter = []
test_losses = []
test_counter = [i * len(train_loader.dataset) for i in range(n_epochs + 1)]


def train(epoch):
    network.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()
        output = network(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                       100. * batch_idx / len(train_loader), loss.item()))
            train_losses.append(loss.item())
            train_counter.append(
                (batch_idx * 64) + ((epoch - 1) * len(train_loader.dataset)))
            torch.save(network.state_dict(), './model.pth')
            torch.save(optimizer.state_dict(), './optimizer.pth')


def test():
    network.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            output = network(data)
            test_loss += F.nll_loss(output, target, size_average=False).item()
            pred = output.data.max(1, keepdim=True)[1]
            correct += pred.eq(target.data.view_as(pred)).sum()
    test_loss /= len(test_loader.dataset)
    test_losses.append(test_loss)
    print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))


for epoch in range(1, n_epochs + 1):
    train(epoch)
    test()

输出结果:
Train Epoch: 1 [0/60000 (0%)] Loss: 2.297471
Train Epoch: 1 [6400/60000 (11%)] Loss: 1.934886
Train Epoch: 1 [12800/60000 (21%)] Loss: 1.242982
Train Epoch: 1 [19200/60000 (32%)] Loss: 0.979296
Train Epoch: 1 [25600/60000 (43%)] Loss: 1.277279
Train Epoch: 1 [32000/60000 (53%)] Loss: 0.721533
Train Epoch: 1 [38400/60000 (64%)] Loss: 0.759595
Train Epoch: 1 [44800/60000 (75%)] Loss: 0.469635
Train Epoch: 1 [51200/60000 (85%)] Loss: 0.422614
Train Epoch: 1 [57600/60000 (96%)] Loss: 0.417603

Test set: Avg. loss: 0.1988, Accuracy: 9431/10000 (94%)

Train Epoch: 2 [0/60000 (0%)] Loss: 0.277207
Train Epoch: 2 [6400/60000 (11%)] Loss: 0.328862
Train Epoch: 2 [12800/60000 (21%)] Loss: 0.396312
Train Epoch: 2 [19200/60000 (32%)] Loss: 0.301772
Train Epoch: 2 [25600/60000 (43%)] Loss: 0.253600
Train Epoch: 2 [32000/60000 (53%)] Loss: 0.217821
Train Epoch: 2 [38400/60000 (64%)] Loss: 0.395815
Train Epoch: 2 [44800/60000 (75%)] Loss: 0.265737
Train Epoch: 2 [51200/60000 (85%)] Loss: 0.323627
Train Epoch: 2 [57600/60000 (96%)] Loss: 0.236692

Test set: Avg. loss: 0.1233, Accuracy: 9622/10000 (96%)

Train Epoch: 3 [0/60000 (0%)] Loss: 0.500148
Train Epoch: 3 [6400/60000 (11%)] Loss: 0.338118
Train Epoch: 3 [12800/60000 (21%)] Loss: 0.452308
Train Epoch: 3 [19200/60000 (32%)] Loss: 0.374940
Train Epoch: 3 [25600/60000 (43%)] Loss: 0.323300
Train Epoch: 3 [32000/60000 (53%)] Loss: 0.203830
Train Epoch: 3 [38400/60000 (64%)] Loss: 0.379557
Train Epoch: 3 [44800/60000 (75%)] Loss: 0.334822
Train Epoch: 3 [51200/60000 (85%)] Loss: 0.361676
Train Epoch: 3 [57600/60000 (96%)] Loss: 0.218833

Test set: Avg. loss: 0.0911, Accuracy: 9723/10000 (97%)

完整代码

import torchvision
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt

# 设置超参数
n_epochs = 3
batch_size_train = 64
batch_size_test = 1000
learning_rate = 0.01
momentum = 0.5
log_interval = 100
random_seed = 1
torch.manual_seed(random_seed)

# 数据读取
train_loader = torch.utils.data.DataLoader(
    torchvision.datasets.MNIST('./data/', train=True, download=True,
                               transform=torchvision.transforms.Compose([
                                   torchvision.transforms.ToTensor(),
                                   torchvision.transforms.Normalize(
                                       (0.1307,), (0.3081,))
                               ])),
    batch_size=batch_size_train, shuffle=True)

test_loader = torch.utils.data.DataLoader(
    torchvision.datasets.MNIST('./data/', train=False, download=True,
                               transform=torchvision.transforms.Compose([
                                   torchvision.transforms.ToTensor(),
                                   torchvision.transforms.Normalize(
                                       (0.1307,), (0.3081,))
                               ])),
    batch_size=batch_size_test, shuffle=True)

examples = enumerate(test_loader)
batch_idx, (example_data, example_targets) = next(examples)

# 调试输出
print(example_targets)
print(example_data.shape)

# 画图 (前6个)
fig = plt.figure()
for i in range(6):
    plt.subplot(2, 3, i + 1)
    plt.tight_layout()
    plt.imshow(example_data[i][0], cmap='gray', interpolation='none')
    plt.title("Ground Truth: {}".format(example_targets[i]))
    plt.xticks([])
    plt.yticks([])
plt.show()


# 创建model
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x)


network = Net()
optimizer = optim.SGD(network.parameters(), lr=learning_rate,
                      momentum=momentum)

# 训练
train_losses = []
train_counter = []
test_losses = []
test_counter = [i * len(train_loader.dataset) for i in range(n_epochs + 1)]


def train(epoch):
    network.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()
        output = network(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                       100. * batch_idx / len(train_loader), loss.item()))
            train_losses.append(loss.item())
            train_counter.append(
                (batch_idx * 64) + ((epoch - 1) * len(train_loader.dataset)))
            torch.save(network.state_dict(), './model.pth')
            torch.save(optimizer.state_dict(), './optimizer.pth')


def test():
    network.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            output = network(data)
            test_loss += F.nll_loss(output, target, size_average=False).item()
            pred = output.data.max(1, keepdim=True)[1]
            correct += pred.eq(target.data.view_as(pred)).sum()
    test_loss /= len(test_loader.dataset)
    test_losses.append(test_loss)
    print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))


for epoch in range(1, n_epochs + 1):
    train(epoch)
    test()

到此这篇关于PyTorch一小时掌握之神经网络分类篇的文章就介绍到这了,更多相关PyTorch神经网络分类内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Flask实现跨域请求的处理方法

    Flask实现跨域请求的处理方法

    这篇文章主要介绍了Flask实现跨域请求的处理方法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-09-09
  • 使用python实现多维数据降维操作

    使用python实现多维数据降维操作

    今天小编就为大家分享一篇使用python实现多维数据降维操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02
  • Python图像处理之Hough圆形检测

    Python图像处理之Hough圆形检测

    霍夫变换是一种特征检测(feature extraction),被广泛应用在图像分析,本文将利用Hough变换实现圆形检测,感兴趣的小伙伴可以跟随小编一起了解一下
    2023-07-07
  • 使用Python读取.nc文件的方法详解

    使用Python读取.nc文件的方法详解

    .nc文件,即NetCDF(Network Common Data Form)文件,是一种用于存储科学数据的文件格式,本文主要为大家介绍了两种常见的读取方法,希望对大家有所帮助
    2024-03-03
  • Python Generator生成器函数基本概念及高级用途技巧示例

    Python Generator生成器函数基本概念及高级用途技巧示例

    这篇文章主要为大家介绍了Python Generator生成器函数基本概念及高级用途技巧示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-12-12
  • 在Apache服务器上同时运行多个Django程序的方法

    在Apache服务器上同时运行多个Django程序的方法

    这篇文章主要介绍了在Apache服务器上同时运行多个Django程序的方法,Django是Python各色高人气web框架中最为著名的一个,需要的朋友可以参考下
    2015-07-07
  • 详解python中[-1]、[:-1]、[::-1]、[n::-1]使用方法

    详解python中[-1]、[:-1]、[::-1]、[n::-1]使用方法

    这篇文章主要介绍了详解python中[-1]、[:-1]、[::-1]、[n::-1]使用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-04-04
  • Python的Random库的使用方法详解

    Python的Random库的使用方法详解

    这篇文章主要介绍了Python的Random库的使用方法详解,random库是使用随机数的Python标准库,python中用于生成伪随机数的函数库是random,需要的朋友可以参考下
    2023-07-07
  • Pytorch矩阵乘法(torch.mul() 、 torch.mm() 和torch.matmul()的区别)

    Pytorch矩阵乘法(torch.mul() 、 torch.mm() 和torch.m

    在深度学习和神经网络的世界里,矩阵乘法是一项至关重要的操作,本文主要介绍了Pytorch矩阵乘法,包含了torch.mul() 、 torch.mm() 和torch.matmul()的区别,具有一定的参考价值,感兴趣的可以了解一下
    2024-03-03
  • 通过实例简单了解Python sys.argv[]使用方法

    通过实例简单了解Python sys.argv[]使用方法

    这篇文章主要介绍了通过实例简单了解Python sys.argv[]使用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-08-08

最新评论