一小时学会TensorFlow2之自定义层

 更新时间:2021年09月08日 14:14:23   作者:我是小白呀  
这篇文章主要介绍了TensorFlow2之自定义层,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

概述

通过自定义网络, 我们可以自己创建网络并和现有的网络串联起来, 从而实现各种各样的网络结构.

Sequential

Sequential 是 Keras 的一个网络容器. 可以帮助我们将多层网络封装在一起.

在这里插入图片描述

通过 Sequential 我们可以把现有的层已经我们自己的层实现结合, 一次前向传播就可以实现数据从第一层到最后一层的计算.

格式:

tf.keras.Sequential(
    layers=None, name=None
)

例子:

# 5层网络模型
model = tf.keras.Sequential([
    tf.keras.layers.Dense(256, activation=tf.nn.relu),
    tf.keras.layers.Dense(128, activation=tf.nn.relu),
    tf.keras.layers.Dense(64, activation=tf.nn.relu),
    tf.keras.layers.Dense(32, activation=tf.nn.relu),
    tf.keras.layers.Dense(10)
])

Model & Layer

通过 Model 和 Layer 的__init__call()我们可以自定义层和模型.

Model:

class My_Model(tf.keras.Model):  # 继承Model

    def __init__(self):
        """
        初始化
        """
        
        super(My_Model, self).__init__()
        self.fc1 = My_Dense(784, 256)  # 第一层
        self.fc2 = My_Dense(256, 128)  # 第二层
        self.fc3 = My_Dense(128, 64)  # 第三层
        self.fc4 = My_Dense(64, 32)  # 第四层
        self.fc5 = My_Dense(32, 10)  # 第五层

    def call(self, inputs, training=None):
        """
        在Model被调用的时候执行
        :param inputs: 输入
        :param training: 默认为None
        :return: 返回输出
        """
        
        x = self.fc1(inputs)
        x = tf.nn.relu(x)
        x = self.fc2(x)
        x = tf.nn.relu(x)
        x = self.fc3(x)
        x = tf.nn.relu(x)
        x = self.fc4(x)
        x = tf.nn.relu(x)
        x = self.fc5(x)

        return x

Layer:

class My_Dense(tf.keras.layers.Layer):  # 继承Layer

    def __init__(self, input_dim, output_dim):
        """
        初始化
        :param input_dim:
        :param output_dim:
        """

        super(My_Dense, self).__init__()

        # 添加变量
        self.kernel = self.add_variable("w", [input_dim, output_dim])  # 权重
        self.bias = self.add_variable("b", [output_dim])  # 偏置

    def call(self, inputs, training=None):
        """
        在Layer被调用的时候执行, 计算结果
        :param inputs: 输入
        :param training: 默认为None
        :return: 返回计算结果
        """

        # y = w * x + b
        out = inputs @ self.kernel + self.bias

        return out

案例

数据集介绍

CIFAR-10 是由 10 类不同的物品组成的 6 万张彩色图片的数据集. 其中 5 万张为训练集, 1 万张为测试集.

在这里插入图片描述

完整代码

import tensorflow as tf

def pre_process(x, y):

    # 转换x
    x = 2 * tf.cast(x, dtype=tf.float32) / 255 - 1  # 转换为-1~1的形式
    x = tf.reshape(x, [-1, 32 * 32 * 3])  # 把x铺平

    # 转换y
    y = tf.convert_to_tensor(y)  # 转换为0~1的形式
    y = tf.one_hot(y, depth=10)  # 转成one_hot编码

    # 返回x, y
    return x, y

def get_data():
    """
    获取数据
    :return:
    """

    # 获取数据
    (X_train, y_train), (X_test, y_test) = tf.keras.datasets.cifar10.load_data()

    # 调试输出维度
    print(X_train.shape)  # (50000, 32, 32, 3)
    print(y_train.shape)  # (50000, 1)

    # squeeze
    y_train = tf.squeeze(y_train)  # (50000, 1) => (50000,)
    y_test = tf.squeeze(y_test)  # (10000, 1) => (10000,)

    # 分割训练集
    train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train)).shuffle(10000, seed=0)
    train_db = train_db.batch(batch_size).map(pre_process).repeat(iteration_num)  # 迭代20次

    # 分割测试集
    test_db = tf.data.Dataset.from_tensor_slices((X_test, y_test)).shuffle(10000, seed=0)
    test_db = test_db.batch(batch_size).map(pre_process)

    return train_db, test_db

class My_Dense(tf.keras.layers.Layer):  # 继承Layer

    def __init__(self, input_dim, output_dim):
        """
        初始化
        :param input_dim:
        :param output_dim:
        """

        super(My_Dense, self).__init__()

        # 添加变量
        self.kernel = self.add_weight("w", [input_dim, output_dim])  # 权重
        self.bias = self.add_weight("b", [output_dim])  # 偏置

    def call(self, inputs, training=None):
        """
        在Layer被调用的时候执行, 计算结果
        :param inputs: 输入
        :param training: 默认为None
        :return: 返回计算结果
        """

        # y = w * x + b
        out = inputs @ self.kernel + self.bias

        return out


class My_Model(tf.keras.Model):  # 继承Model

    def __init__(self):
        """
        初始化
        """

        super(My_Model, self).__init__()
        self.fc1 = My_Dense(32 * 32 * 3, 256)  # 第一层
        self.fc2 = My_Dense(256, 128)  # 第二层
        self.fc3 = My_Dense(128, 64)  # 第三层
        self.fc4 = My_Dense(64, 32)  # 第四层
        self.fc5 = My_Dense(32, 10)  # 第五层

    def call(self, inputs, training=None):
        """
        在Model被调用的时候执行
        :param inputs: 输入
        :param training: 默认为None
        :return: 返回输出
        """

        x = self.fc1(inputs)
        x = tf.nn.relu(x)
        x = self.fc2(x)
        x = tf.nn.relu(x)
        x = self.fc3(x)
        x = tf.nn.relu(x)
        x = self.fc4(x)
        x = tf.nn.relu(x)
        x = self.fc5(x)

        return x

# 定义超参数
batch_size = 256  # 一次训练的样本数目
learning_rate = 0.001  # 学习率
iteration_num = 20  # 迭代次数
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)  # 优化器
loss = tf.losses.CategoricalCrossentropy(from_logits=True)  # 损失
network = My_Model()  # 实例化网络

# 调试输出summary
network.build(input_shape=[None, 32 * 32 * 3])
print(network.summary())

# 组合
network.compile(optimizer=optimizer,
                loss=loss,
                metrics=["accuracy"])

if __name__ == "__main__":
    # 获取分割的数据集
    train_db, test_db = get_data()

    # 拟合
    network.fit(train_db, epochs=5, validation_data=test_db, validation_freq=1)

输出结果:

Model: "my__model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
my__dense (My_Dense) multiple 786688
_________________________________________________________________
my__dense_1 (My_Dense) multiple 32896
_________________________________________________________________
my__dense_2 (My_Dense) multiple 8256
_________________________________________________________________
my__dense_3 (My_Dense) multiple 2080
_________________________________________________________________
my__dense_4 (My_Dense) multiple 330
=================================================================
Total params: 830,250
Trainable params: 830,250
Non-trainable params: 0
_________________________________________________________________
None
(50000, 32, 32, 3)
(50000, 1)
2021-06-15 14:35:26.600766: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2)
Epoch 1/5
3920/3920 [==============================] - 39s 10ms/step - loss: 0.9676 - accuracy: 0.6595 - val_loss: 1.8961 - val_accuracy: 0.5220
Epoch 2/5
3920/3920 [==============================] - 41s 10ms/step - loss: 0.3338 - accuracy: 0.8831 - val_loss: 3.3207 - val_accuracy: 0.5141
Epoch 3/5
3920/3920 [==============================] - 41s 10ms/step - loss: 0.1713 - accuracy: 0.9410 - val_loss: 4.2247 - val_accuracy: 0.5122
Epoch 4/5
3920/3920 [==============================] - 41s 10ms/step - loss: 0.1237 - accuracy: 0.9581 - val_loss: 4.9458 - val_accuracy: 0.5050
Epoch 5/5
3920/3920 [==============================] - 42s 11ms/step - loss: 0.1003 - accuracy: 0.9666 - val_loss: 5.2425 - val_accuracy: 0.5097

到此这篇关于一小时学会TensorFlow2之自定义层的文章就介绍到这了,更多相关TensorFlow2自定义层内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python爬虫之你好,李焕英电影票房数据分析

    python爬虫之你好,李焕英电影票房数据分析

    这篇文章主要介绍了python爬虫之你好,李焕英电影票房数据分析,文中有非常详细的代码示例,对正在学习python爬虫的小伙伴们有一定的帮助,需要的朋友可以参考下
    2021-04-04
  • Python3爬虫学习之将爬取的信息保存到本地的方法详解

    Python3爬虫学习之将爬取的信息保存到本地的方法详解

    这篇文章主要介绍了Python3爬虫学习之将爬取的信息保存到本地的方法,结合实例形式详细分析了Python3信息爬取、文件读写、图片存储等相关操作技巧,需要的朋友可以参考下
    2018-12-12
  • Python map函数()用法

    Python map函数()用法

    map()函数是Python中的一个内置函数,它的功能是将指定的函数,依次作用于可迭代对象的每个元素,并返回一个迭代器对象,这篇文章主要介绍了Python map函数()用法,需要的朋友可以参考下
    2023-07-07
  • 解决Django layui {{}}冲突的问题

    解决Django layui {{}}冲突的问题

    今天小编就为大家分享一篇解决Django layui {{}}冲突的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-08-08
  • Python实现图书管理系统设计

    Python实现图书管理系统设计

    这篇文章主要为大家详细介绍了Python实现图书管理系统设计,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-03-03
  • pyqt5实现绘制ui,列表窗口,滚动窗口显示图片的方法

    pyqt5实现绘制ui,列表窗口,滚动窗口显示图片的方法

    今天小编就为大家分享一篇pyqt5实现绘制ui,列表窗口,滚动窗口显示图片的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-06-06
  • python实现单链表中删除倒数第K个节点的方法

    python实现单链表中删除倒数第K个节点的方法

    这篇文章主要为大家详细介绍了python实现单链表中删除倒数第K个节点的方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-09-09
  • Python可变和不可变、类的私有属性实例分析

    Python可变和不可变、类的私有属性实例分析

    这篇文章主要介绍了Python可变和不可变、类的私有属性,结合实例形式分析了Python值可变与不可变的情况及内存地址变化,类的私有属性定义、访问相关操作技巧,需要的朋友可以参考下
    2019-05-05
  • 了解不常见但是实用的Python技巧

    了解不常见但是实用的Python技巧

    下面有一些相对不常见但非常有用的Python技巧,小编来和大家一起学习一下
    2019-05-05
  • Python numpy视图与副本

    Python numpy视图与副本

    这篇文章主要介绍了Python numpy视图与副本,继上一篇对numpy 模块之ndarray一文中对 ndarray 内存结构主要分为两部分metdata 、raw bata,下面来一起学习文章具体内容吧,需要的小伙伴也可以参考一下
    2022-01-01

最新评论