OpenCV实现图像滤波之双边滤波

 更新时间:2021年10月11日 16:27:45   作者:Sam Chou  
这篇文章主要为大家详细介绍了OpenCV实现图像滤波之双边滤波,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

本文实例为大家分享了opencv实现双边滤波的具体代码,供大家参考,具体内容如下

1、2D卷积

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
 
 
"""
使用自定义卷积核进行图像2D卷积操作
    函数原型:
        filter2D(src, ddepth, kernel[, dst[, anchor[, delta[, borderType]]]]) -> dst
        函数返回值:dst:2d卷积操作后的结果
        函数解析:
            ddepth:指定输出图像深度,-1表示与src深度保持一致
            kernel:卷积内核大小, 需大于零,可以不同,如核大小(4,5)
            anchor:锚点;默认值Point(-1,-1)表示锚位于内核中央
            delta:在将它们存储在dst中之前,将delta可选值添加到已过滤的像素中,默认为None
            borderType:边框模式用于图像外部的像素, 默认边缘像素拷贝
"""
 
import cv2 as cv
import numpy as np
 
img = cv.imread('./test.png')
 
# 自定义的一些卷积核
kernel = np.ones((5, 5), np.float32) / 25
 
kernel_user_1 = np.array([[0, 0, 1, 0, 0],
                          [0, 0, 1, 0, 0],
                          [1, 1, 1, 1, 1],
                          [0, 0, 1, 0, 0],
                          [0, 0, 1, 0, 0]]) / 9
 
kernel_user_2 = np.array([[1, 0, 0, 0, 1],
                          [0, 1, 0, 1, 0],
                          [0, 0, 1, 0, 0],
                          [0, 1, 0, 1, 0],
                          [1, 0, 0, 0, 1]]) / 9
 
kernel_user_3 = np.array([[0, 0, 0, 0, 0],
                          [0, 1, 1, 1, 0],
                          [0, 1, 1, 1, 0],
                          [0, 1, 1, 1, 0],
                          [0, 0, 0, 0, 0]]) / 9
 
kernel_user_4 = np.array([[1, 1, 1, 1, 1],
                          [1, 0, 0, 0, 1],
                          [1, 0, 0, 0, 1],
                          [1, 0, 0, 0, 1],
                          [1, 1, 1, 1, 1]]) / 16
 
dst = cv.filter2D(img, -1, kernel)
dst1 = cv.filter2D(img, -1, kernel_user_1)
dst2 = cv.filter2D(img, -1, kernel_user_2)
dst3 = cv.filter2D(img, -1, kernel_user_3)
dst4 = cv.filter2D(img, -1, kernel_user_4)
 
h1 = np.hstack((img, dst, dst1))
h2 = np.hstack((dst2, dst3, dst4))
cv.imshow('show', np.vstack((h1, h2)))
 
cv.waitKey(0)
cv.destroyAllWindows()
 
# 理解提高
small = np.array(range(10, 55, 5), np.uint8).reshape(3, -1)
print(small)
print('*' * 60)
 
small_filter = cv.filter2D(small, -1, (np.ones((3, 3), np.float32) / (3 * 3)))
print(small_filter)

2、双边滤波

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
 
 
"""
    双边滤波器可以很好的保存图像边缘细节并滤除掉低频分量的噪音,
    但是双边滤波器的效率不是太高,花费的时间相较于其他滤波器而言也比较长。
    函数原型:
        bilateralFilter(src, d, sigmaColor, sigmaSpace[, dst[, borderType]]) -> dst
        重点参数解析:
            d:表示在过滤过程中每个像素邻域的直径范围。如果该值是非正数,则将由sigmaSpace计算
            sigmaColor:颜色空间过滤器的sigma值,值越大表示有越宽广的颜色混合到一起
            sigmaSpace: 坐标空间中滤波器的sigma值,如果该值较大,则意味着越远的像素将相互影响
            borderType:边框模式用于图像外部的像素, 默认边缘像素拷贝
"""
 
import cv2 as cv
import numpy as np
 
# img_path = './images/Fig4.11(a).jpg'
# img_path = './images/Fig5.08(b).jpg'
# img_path = './images/Fig0519(a)(florida_satellite_original).tif'
img_path = 'noisy2.png'
 
img = cv.imread(img_path)
 
 
def nothing(x):
    pass
 
 
cv.namedWindow('image')
 
# 创建滑动条
cv.createTrackbar('d', 'image', 0, 100, nothing)
cv.createTrackbar('sigmaColor', 'image', 0, 200, nothing)
cv.createTrackbar('sigmaSpace', 'image', 0, 200, nothing)
 
cv.imshow('img', img)
cv.imshow('image', img)
 
while True:
    k = cv.waitKey(25) & 0XFF
    if chr(k) == 'q':
        break
    if chr(k) == 'k':
        d = cv.getTrackbarPos('d', 'image')
        sigmaColor = cv.getTrackbarPos('sigmaColor', 'image')
        sigmaSpace = cv.getTrackbarPos('sigmaSpace', 'image')
        b_filter = cv.bilateralFilter(img, d, sigmaColor, sigmaSpace)
        ret, thresh = cv.threshold(b_filter, 127, 255, cv.THRESH_BINARY)
        sava_name = ''.join(('outputs/', 'b_filter', str(d), '_', str(sigmaColor), '_', str(sigmaColor)))
        cv.imshow('image', np.hstack((b_filter, thresh)))
        cv.imwrite(sava_name + '.jpg', b_filter)
        cv.imwrite(sava_name + '_thr.jpg', thresh)
 
cv.destroyAllWindows()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • Python中Windows和macOS文件路径格式不一致的解决方法

    Python中Windows和macOS文件路径格式不一致的解决方法

    在 Python 中,Windows 和 macOS 的文件路径字符串格式不一致主要体现在路径分隔符上,这种差异可能导致跨平台代码在处理文件路径时出错,下面我们看看如何解决吧
    2025-03-03
  • Python PySpider爬虫框架安装使用教程

    Python PySpider爬虫框架安装使用教程

    PySpider是一个Python编写的分布式网络爬虫框架,它可以帮助开发者快速构建和部署爬虫,并支持爬虫任务的分布式运行,PySpider基于Twisted网络框架和MongoDB数据库,具有高效、稳定、易用等特点,同时还提供了一套Web界面,可以方便地查看爬虫任务的运行状态和结果
    2023-11-11
  • Python中装饰器高级用法详解

    Python中装饰器高级用法详解

    这篇文章主要介绍了Python中的装饰器的高级用法,以实例形式详细的分析了Python中的装饰器的使用技巧及相关注意事项
    2017-12-12
  • python3爬取淘宝信息代码分析

    python3爬取淘宝信息代码分析

    本篇文章通过代码实例给大家分享了python3爬取淘宝信息的过程以及实例分析,对此有兴趣的朋友学习下。
    2018-02-02
  • Python代理抓取并验证使用多线程实现

    Python代理抓取并验证使用多线程实现

    这里没有使用队列只是采用多线程分发对代理量不大的网页还行但是几百几千性能就很差了,感兴趣的朋友可以了解下,希望对你有所帮助
    2013-05-05
  • Python中pip更新和三方插件安装说明

    Python中pip更新和三方插件安装说明

    本篇文章给大家分享了Python中pip更新和三方插件安装的相关知识点内容,有兴趣的朋友可以参考学习下。
    2018-07-07
  • Python中的迭代器详解

    Python中的迭代器详解

    这篇文章主要介绍迭代器,看完文章你可以了解到什么是可迭代对象、啥是迭代器、如何自定义迭代器、使用迭代器的优势,文中有详细的代码示例,需要的朋友可以参考下
    2023-08-08
  • Python如何绘制概率分布直方图浅析

    Python如何绘制概率分布直方图浅析

    项目中在前期经常要看下数据的分布情况,这对于探究数据规律非常有用,概率分布表示样本数据的模样,使用Python绘制频率分布直方图非常简洁,因为用的频次非常高,这篇文章主要给大家介绍了关于Python如何绘制概率分布直方图的相关资料,需要的朋友可以参考下
    2021-12-12
  • 对pandas的dataframe绘图并保存的实现方法

    对pandas的dataframe绘图并保存的实现方法

    下面小编就为大家带来一篇对pandas的dataframe绘图并保存的实现方法。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-08-08
  • Python使用Pickle库实现读写序列操作示例

    Python使用Pickle库实现读写序列操作示例

    这篇文章主要介绍了Python使用Pickle库实现读写序列操作,结合实例形式分析了pickle模块的功能、常用函数以及序列化与反序列化相关操作技巧,需要的朋友可以参考下
    2018-06-06

最新评论