Numpy如何检查数组全为零的几种方法

 更新时间:2021年10月17日 16:46:07   作者:笨牛慢耕  
本文主要介绍了Numpy如何检查数组全为零的几种方法,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

概要

        简单介绍几种用于判断numpy数组是否全零的测试方法。

1 numpy.any()

        numpy.any()函数用于检查一个numpy数字是否存在任何一个非0元素,因此将numpy.any()的结果取反即得“numpy数组是否全0”的结果。例如:      

import numpy as np
 
print('Using numpy.any()...')
a_1D = np.zeros(5)
print('Is a_1D all zeros?: ', not(np.any(a_1D)))
print('Is a_1D all zeros?: ', ~(np.any(a_1D)))
a_1D[2] = -1
print('Is a_1D all zeros?: ', not(np.any(a_1D)))
 
a_2D = np.zeros((2,3))
print(a_2D)
print('Is a_2D all zeros?: ', not(np.any(a_2D)))
a_2D[1,2] = 0.1
print('Is a_2D all zeros?: ', not(np.any(a_2D)))

输出结果:

        Using numpy.any()...
        Is a_1D all zeros?:  True
        Is a_1D all zeros?:  True
        Is a_1D all zeros?:  False
        [[0. 0. 0.]
         [0. 0. 0.]]
        Is a_2D all zeros?:  True
        Is a_2D all zeros?:  False

        注意,python中逻辑取反可以用"~"也可以用"not",但是不能用“!”(“!=”是比较运算符--comparison operator, 只能用于比如说"b!=c"这样)。另外,"~"和"not"也是有区别的,参见以下第4节。

2 numpy.count_nonzero()

      numpy.count_nonzero()用于对数组的0元素个数进行计数,因此也可以用来执行是否全0的判断。用法如下:

print('Using numpy.nonzero()...')
a = np.array([1,2,3,0,0,1])
print('Number of zeros in a = ',np.count_nonzero(a))
print('Is a all zeros?: ', np.count_nonzero(a)==0)
a[:] = 0 # Force a to all-zeros array
print('Is a all zeros?: ', np.count_nonzero(a)==0)
print('Is a all zeros?: ', not np.count_nonzero(a))

        Using numpy.nonzero()...
        Number of zeros in a =  4
        Is a all zeros?:  False
        Is a all zeros?:  True
        Is a all zeros?:  True 

3 numpy.all()  

        用numpy.all()也可以实现这一功能。以下例子利用了python内部会自动进行0--False, 1--True的转换。

print('')
print('Using numpy.all()...')
a = np.zeros(10)
print('Is a all zeros?: ', np.all(a==0))

        Using numpy.all()...
        Is a all zeros?:  True 

4. 多维数组可以分axis进行判断

        对于多维数组(这正是numpy正真发挥强悍实力的地方)以上函数在缺省情况下是对整个数组进行统一判断,但是也可以通过axis参数指定沿指定轴分别处理。如下例所示:

print('')
print('Judge according to the specified axis')
a_2D = np.zeros((2,3))
a_2D[1,2] = 0.1
print(a_2D)
print('Is each col of a_2D all zeros?: ', ~(np.any(a_2D, axis=0)))
print('Is each row of a_2D all zeros?: ', ~(np.any(a_2D, axis=1)))

Judge according to the specified axis
[[0.  0.  0. ]
 [0.  0.  0.1]]
Is each col of a_2D all zeros?:  [ True  True False]
Is each row of a_2D all zeros?:  [ True False]

        当指定axis=0时相当于对2维数组按列判断是否全0,指定axis=1时相当于对2维数组按行判断是否全0。当然,这里所说的行和列的概念是从传统的2维数组或者矩阵里继承而来的概念,当考虑更高维数组的时候,行和列这个概念就不再适用了。关于高维数组(也称:Tensor,张量)的axis将另文介绍。

        另外,前面提到表示逻辑取反的“~”和“not”是有所不同的。具体来说就是,not只接受一个操作数,因此以上这个例子如果将"~"改为not的话会报错,如下所示:

print('Is each col of a_2D all zeros?: ', not(np.any(a_2D, axis=0)))
print('Is each row of a_2D all zeros?: ', not(np.any(a_2D, axis=1)))

        报错如下: 

        而“~”是所谓的Bitwise NOT operator.

        如果"~"的输入是一个整数的的话,它会将输入数的所有比特都取反。如果是一个numpy 数组的话,则会对其中每一个数执行按位逻辑取反操作。如果是一个numpy布尔类型(True, False)数组的话,则会对其中每一个布尔数执行逻辑取反操作--以上例子中正是这种用法。

到此这篇关于Numpy如何检查数组全为零的几种方法的文章就介绍到这了,更多相关Numpy 检查数组全为零内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:

相关文章

  • tensorflow 获取模型所有参数总和数量的方法

    tensorflow 获取模型所有参数总和数量的方法

    今天小编就为大家分享一篇tensorflow 获取模型所有参数总和数量的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-06-06
  • 在Django的视图中使用form对象的方法

    在Django的视图中使用form对象的方法

    这篇文章主要介绍了在Django的视图中使用form对象的方法,Django是Python丰富多彩的开发框架中最具有人气的一个,需要的朋友可以参考下
    2015-07-07
  • django静态文件加载的方法

    django静态文件加载的方法

    本篇文章主要介绍了django静态文件加载的方法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-05-05
  • 谨慎使用Python进行矩阵计算解析

    谨慎使用Python进行矩阵计算解析

    这篇文章主要介绍了使用Python进行矩阵计算原理解析,真正的单位矩阵,只有对角线元素为1,其他元素为0,用 np.identity(N) 生成单位矩阵,需要的朋友可以参考下
    2023-08-08
  • Python实现判断一个整数是否为回文数算法示例

    Python实现判断一个整数是否为回文数算法示例

    这篇文章主要介绍了Python实现判断一个整数是否为回文数算法,结合实例形式分析了Python针对字符串的翻转、判断等相关操作技巧,需要的朋友可以参考下
    2019-03-03
  • 如何使用Python设置和读取config.ini文件

    如何使用Python设置和读取config.ini文件

    使用配置文件是一种常见的方法,而INI文件是一种简单而常见的配置文件格式,在本文中,我将介绍如何使用Python设置和读取INI格式的配置文件,需要的朋友可以参考下
    2024-03-03
  • Pycharm配置远程SSH服务器实现(切换不同虚拟环境)

    Pycharm配置远程SSH服务器实现(切换不同虚拟环境)

    本文主要介绍了Pycharm配置远程SSH服务器实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02
  • Python圆周率算法不只是3.14更多玩法揭秘

    Python圆周率算法不只是3.14更多玩法揭秘

    本篇博客将引领读者穿越数学、计算和可视化的领域,通过丰富的示例代码,揭示π的独特之处,无论是计算π的各种方法、应用领域中的角色,还是π作为无理数的特性,我们将通过Python的镜头,发现这个数字在数学世界中的非凡之处
    2024-01-01
  • python3里gbk编码的问题解决

    python3里gbk编码的问题解决

    本文主要介绍了python3里gbk编码的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-08-08
  • Python实现Excel文件的合并(以新冠疫情数据为例)

    Python实现Excel文件的合并(以新冠疫情数据为例)

    这篇将以新冠疫情数据为例,详细介绍了如何利用Python实现合并Excel文件,文中的示例代码讲解详细,感兴趣的可以了解一下
    2022-03-03

最新评论