Python实战小项目之Mnist手写数字识别

 更新时间:2021年10月20日 15:01:10   作者:GSAU-深蓝工作室  
MNIST 数据集已经是一个被”嚼烂”了的数据集, 很多教程都会对它”下手”, 几乎成为一个 “典范”. 不过有些人可能对它还不是很了解, 下面通过一个小实例来带你了解它

程序流程分析图:

传播过程:

代码展示:

创建环境

使用<pip install+包名>来下载torch,torchvision包

准备数据集

设置一次训练所选取的样本数Batch_Sized的值为512,训练此时Epochs的值为8

BATCH_SIZE = 512
EPOCHS = 8
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

下载数据集

Normalize()数字归一化,转换使用的值0.1307和0.3081是MNIST数据集的全局平均值和标准偏差,这里我们将它们作为给定值。model

train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('data', train=True, download=True,
                   transform=transforms.Compose([.
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ])),
    batch_size=BATCH_SIZE, shuffle=True)

下载测试集

test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('data', train=False,
                   transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ])),
    batch_size=BATCH_SIZE, shuffle=True)

绘制图像

我们可以使用matplotlib来绘制其中的一些图像

examples = enumerate(test_loader)
batch_idx, (example_data, example_targets) = next(examples)
print(example_targets)
print(example_data.shape)
print(example_data)
 
import matplotlib.pyplot as plt
fig = plt.figure()
for i in range(6):
  plt.subplot(2,3,i+1)
  plt.tight_layout()
  plt.imshow(example_data[i][0], cmap='gray', interpolation='none')
  plt.title("Ground Truth: {}".format(example_targets[i]))
  plt.xticks([])
  plt.yticks([])
plt.show()

搭建神经网络

这里我们构建全连接神经网络,我们使用三个全连接(或线性)层进行前向传播。

class linearNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(784, 128)
        self.fc2 = nn.Linear(128, 64)
        self.fc3 = nn.Linear(64, 10)
    def forward(self, x):
        x = x.view(-1, 784)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.fc2(x)
        x = F.relu(x)
        x = self.fc3(x)
        x = F.log_softmax(x, dim=1)
        return x

训练模型

首先,我们需要使用optimizer.zero_grad()手动将梯度设置为零,因为PyTorch在默认情况下会累积梯度。然后,我们生成网络的输出(前向传递),并计算输出与真值标签之间的负对数概率损失。现在,我们收集一组新的梯度,并使用optimizer.step()将其传播回每个网络参数。

def train(model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
 
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if (batch_idx) % 30 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                       100. * batch_idx / len(train_loader), loss.item()))

测试模型

def test(model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item() # 将一批的损失相加
            pred = output.max(1, keepdim=True)[1] # 找到概率最大的下标
            correct += pred.eq(target.view_as(pred)).sum().item()
 
    test_loss /= len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))

将训练次数进行循环

if __name__ == '__main__':
    model = linearNet()
    optimizer = optim.Adam(model.parameters())
 
    for epoch in range(1, EPOCHS + 1):
        train(model, device, train_loader, optimizer, epoch)
        test(model, device, test_loader)

保存训练模型

torch.save(model, 'MNIST.pth')

运行结果展示:

分享人:苏云云

到此这篇关于Python实战小项目之Mnist手写数字识别的文章就介绍到这了,更多相关Python Mnist手写数字识别内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python如何打印杨辉三角及输出第m行第k个数

    python如何打印杨辉三角及输出第m行第k个数

    这篇文章主要介绍了python如何打印杨辉三角及输出第m行第k个数问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-08-08
  • Pytorch 抽取vgg各层并进行定制化处理的方法

    Pytorch 抽取vgg各层并进行定制化处理的方法

    今天小编就为大家分享一篇Pytorch 抽取vgg各层并进行定制化处理的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-08-08
  • Python lambda函数使用方法深度总结

    Python lambda函数使用方法深度总结

    在本文中,小编将带大家学习一下Python中的lambda函数,并探讨使用它的优点和局限性。文中的示例代码讲解详细,感兴趣的可以了解一下
    2022-05-05
  • python+selenium实现QQ邮箱自动发送功能

    python+selenium实现QQ邮箱自动发送功能

    这篇文章主要为大家详细介绍了python+selenium实现QQ邮箱自动发送功能,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-01-01
  • Python如何在ubuntu中更改Python和pip指向

    Python如何在ubuntu中更改Python和pip指向

    这篇文章主要介绍了Python如何在ubuntu中更改Python和pip指向问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-08-08
  • Python urllib库的使用指南详解

    Python urllib库的使用指南详解

    所谓网页抓取,就是把URL地址中指定的网络资源从网络流中读取出来,保存到本地。 在Python中有很多库可以用来抓取网页,本文将讲解其中的urllib库,感兴趣的可以了解一下
    2022-04-04
  • Python-opencv 双线性插值实例

    Python-opencv 双线性插值实例

    今天小编就为大家分享一篇Python-opencv 双线性插值实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-01-01
  • PyTorch两种安装方法

    PyTorch两种安装方法

    这篇文章主要介绍了PyTorch两种安装方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-03-03
  • Python实现多子图绘制系统的示例详解

    Python实现多子图绘制系统的示例详解

    这篇文章主要介绍了如何利用python实现多子图绘制系统,文中的示例代码讲解详细,具有一定的的参考价值,感兴趣的小伙伴可以跟随小编一起学习一下
    2023-09-09
  • python基于Tkinter库实现简单文本编辑器实例

    python基于Tkinter库实现简单文本编辑器实例

    这篇文章主要介绍了python基于Tkinter库实现简单文本编辑器,实例分析了Python使用Tkinter库实现简单桌面应用程序的技巧,具有一定参考借鉴价值,需要的朋友可以参考下
    2015-05-05

最新评论