Go语言中的字符串拼接方法详情

 更新时间:2021年10月20日 16:39:16   作者:测试开发小记  
本文介绍Go语言中的string类型、strings包和bytes.Buffer类型,介绍几种字符串拼接方法的相关资料,需要的朋友可以参考一下,希望对你有所帮助

1、string类型

string类型的值可以拆分为一个包含多个字符(rune类型)的序列,也可以被拆分为一个包含多个字节 (byte类型) 的序列。其中一个rune类型值代表一个Unicode 字符,一个rune类型值占用四个字节,底层就是一个 UTF-8 编码值,它其实是int32类型的一个别名类型。

package main

import (
 "fmt"
)

func main() {
 str := "你好world"
 fmt.Printf("The string: %q\n", str)
 fmt.Printf("runes(char): %q\n", []rune(str))
 fmt.Printf("runes(hex): %x\n", []rune(str))
 fmt.Printf("bytes(hex): [% x]\n", []byte(str))
}

执行结果:

The string: "你好world"
runes(char): ['你' '好' 'w' 'o' 'r' 'l' 'd']
runes(hex): [4f60 597d 77 6f 72 6c 64]
bytes(hex): e4 bd a0 e5 a5 bd 77 6f 72 6c 64

可以看到,英文字符使用一个字节,而中文字符需要三个字节。下面使用 for range 语句对上面的字符串进行遍历:

for index, value := range str {
    fmt.Printf("%d: %q [% x]\n", index, value, []byte(string(value)))
}

执行结果如下:

0: '你' [e4 bd a0]
3: '好' [e5 a5 bd]
6: 'w' [77]
7: 'o' [6f]
8: 'r' [72]
9: 'l' [6c]
10: 'd' [64]

index索引值不是0-6,相邻Unicode 字符的索引值不一定是连续的,因为中文字符占用了3个字节,宽度为3。

2、strings包

2.1 strings.Builder类型

strings.Builder的优势主要体现在字符串拼接上,相比使用+拼接,效率更高。

  • strings.Builder已存在的值不可改变,只能重置(Reset()方法)或者拼接更多的内容。
  • 一旦调用了Builder值,就不能再以任何方式对其进行复制,比如函数间值传递、通道传递值、把值赋予变量等。
  • 在进行拼接时,Builder值会自动地对自身的内容容器进行扩容,也可以使用Grow方法进行手动扩容。
package main

import (
 "fmt"
 "strings"
)
func main() {
 var builder1 strings.Builder
 builder1.WriteString("hello")
 builder1.WriteByte(' ')
 builder1.WriteString("world")
 builder1.Write([]byte{' ', '!'})

 fmt.Println(builder1.String()) 

 f1 := func(b strings.Builder) {
  // b.WriteString("world !")  //会报错
 }
 f1(builder1)

 builder1.Reset()
 fmt.Printf("The length 0f builder1: %d\n", builder1.Len())

}

执行结果:

hello world !
The length 0f builder1: 0

2.2 strings.Reader类型

strings.Reader类型可以用于高效地读取字符串,它通过使用已读计数机制来实现了高效读取,已读计数保存了已读取的字节数,也代表了下一次读取的起始索引位置。

package main

import (
 "fmt"
 "strings"
)
func main() { 
 reader1 := strings.NewReader("hello world!")
 buf1 := make([]byte, 6)
    fmt.Printf("reading index: %d\n", reader1.Size()-int64(reader1.Len()))
 
    reader1.Read(buf1)
 fmt.Println(string(buf1))
    fmt.Printf("reading index: %d\n", reader1.Size()-int64(reader1.Len()))
    
 reader1.Read(buf1)
 fmt.Println(string(buf1))
    fmt.Printf("reading index: %d\n", reader1.Size()-int64(reader1.Len()))
}

执行结果:

reading index: 0
hello
reading index: 6
world!
reading index: 12

可以看到,每读取一次之后,已读计数就会增加。

strings包的ReadAt方法不会依据已读计数进行读取,也不会更新已读计数。它可以根据偏移量来自由地读取Reader值中的内容。

package main

import (
 "fmt"
 "strings"
)
func main() {
    reader1 := strings.NewReader("hello world!")
    buf1 := make([]byte, 6)
 offset1 := int64(6)
 n, _ := reader1.ReadAt(buf1, offset1) 
 fmt.Println(string(buf2))
}

执行结果:

world!

也可以使用Seek方法来指定下一次读取的起始索引位置。

package main

import (
 "fmt"
 "strings"
    "io"
)
func main() {
    reader1 := strings.NewReader("hello world!")
    buf1 := make([]byte, 6)
 offset1 := int64(6)
 readingIndex, _ := reader2.Seek(offset1, io.SeekCurrent)
 fmt.Printf("reading index: %d\n", readingIndex)

 reader1.Read(buf1)
 fmt.Printf("reading index: %d\n", reader1.Size()-int64(reader1.Len()))
 fmt.Println(string(buf1))
}

执行结果:

reading index: 6
reading index: 12
world!

3、bytes.Buffer

bytes包和strings包类似,strings包主要面向的是 Unicode 字符和经过 UTF-8 编码的字符串,而bytes包面对的则主要是字节和字节切片,主要作为字节序列的缓冲区。bytes.Buffer数据的读写都使用到了已读计数。

bytes.Buffer具有读和写功能,下面分别介绍他们的简单使用方法。

3.1 bytes.Buffer:写数据

strings.Builder一样,bytes.Buffer可以用于拼接字符串,strings.Builder也会自动对内容容器进行扩容。请看下面的代码:

package main

import (
 "bytes"
 "fmt"
)

func DemoBytes() {
 var buffer bytes.Buffer
 buffer.WriteString("hello ")
 buffer.WriteString("world !")
 fmt.Println(buffer.String())
}

执行结果:

hello world !

3.2 bytes.Buffer:读数据

bytes.Buffer读数据也使用了已读计数,需要注意的是,进行读取操作后,Len方法返回的是未读内容的长度。下面直接来看代码:

package main

import (
 "bytes"
 "fmt"
)

func DemoBytes() {
 var buffer bytes.Buffer
 buffer.WriteString("hello ")
 buffer.WriteString("world !")
    
    p1 := make([]byte, 5)
 n, _ := buffer.Read(p1)
    
 fmt.Println(string(p1))
 fmt.Println(buffer.String())
    fmt.Printf("The length of buffer: %d\n", buffer.Len())
}

执行结果:

hello
 world !
The length of buffer: 8

4、字符串拼接

简单了解了string类型、strings包和bytes.Buffer类型后,下面来介绍golang中的字符串拼接方法。

https://zhuanlan.zhihu.com/p/349672248

go test -bench=. -run=^BenchmarkDemoBytes$

4.1 直接相加

最简单的方法是直接相加,由于string类型的值是不可变的,进行字符串拼接时会生成新的字符串,将拼接的字符串依次拷贝到一个新的连续内存空间中。如果存在大量字符串拼接操作,使用这种方法非常消耗内存。

package main

import (
 "bytes"
 "fmt"
 "time"
)

func main() {
 str1 := "hello "
 str2 := "world !"
    str3 := str1 + str2
    fmt.Println(str3) 
}

4.2strings.Builder

前面介绍了strings.Builder可以用于拼接字符串:

var builder1 strings.Builder
builder1.WriteString("hello ")
builder1.WriteString("world !")

4.3 strings.Join()

也可以使用strings.Join方法,其实Join()调用了WriteString方法;

str1 := "hello "
str2 := "world !"
str3 := ""

str3 = strings.Join([]string{str3,str1},"")
str3 = strings.Join([]string{str3,str2},"")

4.4 bytes.Buffer

bytes.Buffer也可以用于拼接:

var buffer bytes.Buffer

buffer.WriteString("hello ")
buffer.WriteString("world !")

4.5 append方法

也可以使用Go内置函数append方法,用于拼接切片:

package main

import (
 "fmt"
)

func DemoAppend(n int) {
 str1 := "hello "
 str2 := "world !"
 var str3 []byte

    str3 = append(str3, []byte(str1)...)
    str3 = append(str3, []byte(str2)...)
 fmt.Println(string(str3))
}

执行结果:

hello world !

4.6 fmt.Sprintf

fmt包中的Sprintf方法也可以用来拼接字符串:

str1 := "hello "
str2 := "world !"
str3 := fmt.Sprintf("%s%s", str1, str2)

5、字符串拼接性能测试

下面来测试一下这6种方法的性能,编写测试源码文件strcat_test.go

package benchmark

import (
 "bytes"
 "fmt"
 "strings"
 "testing"
)

func DemoBytesBuffer(n int) {
 var buffer bytes.Buffer

 for i := 0; i < n; i++ {
  buffer.WriteString("hello ")
  buffer.WriteString("world !")
 }
}

func DemoWriteString(n int) {
 var builder1 strings.Builder
 for i := 0; i < n; i++ {
  builder1.WriteString("hello ")
  builder1.WriteString("world !")
 }
}

func DemoStringsJoin(n int) {
 str1 := "hello "
 str2 := "world !"
 str3 := ""
 for i := 0; i < n; i++ {
  str3 = strings.Join([]string{str3, str1}, "")
  str3 = strings.Join([]string{str3, str2}, "")
 }

}

func DemoPlus(n int) {

 str1 := "hello "
 str2 := "world !"
 str3 := ""
 for i := 0; i < n; i++ {
  str3 += str1
  str3 += str2
 }
}

func DemoAppend(n int) {

 str1 := "hello "
 str2 := "world !"
 var str3 []byte
 for i := 0; i < n; i++ {
  str3 = append(str3, []byte(str1)...)
  str3 = append(str3, []byte(str2)...)
 }
}

func DemoSprintf(n int) {
 str1 := "hello "
 str2 := "world !"
 str3 := ""
 for i := 0; i < n; i++ {
  str3 = fmt.Sprintf("%s%s", str3, str1)
  str3 = fmt.Sprintf("%s%s", str3, str2)
 }
}

func BenchmarkBytesBuffer(b *testing.B) {
 for i := 0; i < b.N; i++ {
  DemoBytesBuffer(10000)
 }
}

func BenchmarkWriteString(b *testing.B) {
 for i := 0; i < b.N; i++ {
  DemoWriteString(10000)
 }
}

func BenchmarkStringsJoin(b *testing.B) {
 for i := 0; i < b.N; i++ {
  DemoStringsJoin(10000)
 }
}

func BenchmarkAppend(b *testing.B) {
 for i := 0; i < b.N; i++ {
  DemoAppend(10000)
 }
}

func BenchmarkPlus(b *testing.B) {
 for i := 0; i < b.N; i++ {
  DemoPlus(10000)
 }
}

func BenchmarkSprintf(b *testing.B) {
 for i := 0; i < b.N; i++ {
  DemoSprintf(10000)
 }
}


执行性能测试:

$ go test -bench=. -run=^$
goos: windows
goarch: amd64
pkg: testGo/benchmark
cpu: Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz
BenchmarkBytesBuffer-8              3436            326846 ns/op
BenchmarkWriteString-8              4148            271453 ns/op
BenchmarkStringsJoin-8                 3         402266267 ns/op
BenchmarkAppend-8                   1923            618489 ns/op
BenchmarkPlus-8                        3         345087467 ns/op
BenchmarkSprintf-8                     2         628330850 ns/op
PASS
ok      testGo/benchmark        9.279s

通过平均耗时可以看到WriteString方法执行效率最高。Sprintf方法效率最低。

  • 我们看到Strings.Join方法效率也比较低,在上面的场景下它的效率比较低,它在合并已有字符串数组的场合效率是很高的。
  • 如果要连续拼接大量字符串推荐使用WriteString方法,如果是少量字符串拼接,也可以直接使用+。
  • append方法的效率也是很高的,它主要用于切片的拼接。
  • fmt.Sprintf方法虽然效率低,但在少量数据拼接中,如果你想拼接其它数据类型,使用它可以完美的解决:
name := "zhangsan"
age := 20
str4 := fmt.Sprintf("%s is %d years old", name, age)
fmt.Println(str4)  // zhangsan is 20 years old

到此这篇关于Go语言中的字符串拼接方法详情的文章就介绍到这了,更多相关Go语言中的字符串拼接方法内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 在goland中配置gofmt的操作

    在goland中配置gofmt的操作

    这篇文章主要介绍了在goland中配置gofmt的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-12-12
  • 如何让shell终端和goland控制台输出彩色的文字

    如何让shell终端和goland控制台输出彩色的文字

    这篇文章主要介绍了如何让shell终端和goland控制台输出彩色的文字的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-05-05
  • GO中的条件变量sync.Cond详解

    GO中的条件变量sync.Cond详解

    条件变量是基于互斥锁的,它必须基于互斥锁才能发挥作用,条件变量的初始化离不开互斥锁,并且它的方法有点也是基于互斥锁的,这篇文章主要介绍了GO的条件变量sync.Cond,需要的朋友可以参考下
    2023-01-01
  • 从基础到高级全方位解析Go中反射的应用

    从基础到高级全方位解析Go中反射的应用

    本文我们将全面深入地探讨Go语言的反射机制,从反射的基础概念、为什么需要反射,到如何在Go中实现反射,以及在高级编程场景如泛型编程和插件架构中的应用,需要的可以参考下
    2023-10-10
  • 详解golang开发中select多路选择

    详解golang开发中select多路选择

    这篇文章主要介绍了golang开发中select多路选择,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-09-09
  • GPT回答go语言和C语言map操作方法对比

    GPT回答go语言和C语言map操作方法对比

    这篇文章主要为大家介绍了GPT回答go语言和C语言map操作方法对比,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-10-10
  • Go项目开发中如何读取应用配置详解

    Go项目开发中如何读取应用配置详解

    本文主要介绍了Go项目开发中如何读取应用配置详解,Go生态中有很多包可以加载并解析配置,最受欢迎的是Viper包,下面就来详细的介绍一下
    2024-05-05
  • 利用golang实现封装trycatch异常处理实例代码

    利用golang实现封装trycatch异常处理实例代码

    Go语言追求简洁优雅,所以go语言不支持传统的 try…catch…finally 这种异常,最近发现了不错的trycatch包,下面这篇文章主要跟大家分享了关于利用golang实现封装trycatch异常处理的实例代码,需要的朋友可以参考下。
    2017-07-07
  • go语言实现依赖注入的示例代码

    go语言实现依赖注入的示例代码

    依赖注入和控制反转恰恰相反,它是一种具体的编码技巧,我们不通过 new 的方式在类内部创建依赖类的对象,而是将依赖的类对象在外部创建好之后,通过构造函数、函数参数等方式传递给类来使用,本文将给大家介绍go语言实现依赖注入,需要的朋友可以参考下
    2024-01-01
  • Go语言基础go doc命令用法及示例详解

    Go语言基础go doc命令用法及示例详解

    这篇文章主要为大家介绍了Go语言基础go doc命令的用法及示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助祝大家多多进步
    2021-11-11

最新评论