树莓派上利用python+opencv+dlib实现嘴唇检测的实现

 更新时间:2021年10月31日 09:29:13   作者:若水上善666  
本文主要介绍了树莓派上利用python+opencv+dlib实现嘴唇检测的实现,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

树莓派上利用python+opencv+dlib实现嘴唇检测

项目的目标是在树莓派上运行python代码以实现嘴唇检测,本来以为树莓派的硬件是可以流畅运行实时检测的,但是实验的效果表明树莓派实时检测是不可行,后面还需要改进。

实验的效果如下:

在这里插入图片描述

1、安装相关库文件

这里需要用的库有opencv,numpy,dlib。

1.1 安装opencv

pip3 install opencv-python

1.2 安装numpy

树莓派中自带了numpy库

pip3 install numpy

1.3 安装dlib

在树莓派的系统里面安装dlib比较简单,只需要pip install就可以了,但是在window系统中会有报错,这个时候我们就需要安装pip install dlib-19.17.99-cp37-cp37m-win_amd64.whl就可以了, 需要注意的是: 不同的python版本要安装对应版本的dlib,也就是后面的“cp37-cp37m”,查看对应python能安装的版本号,可以使用命令行:pip debug --verbose,可以显示合适的安装版本号。
在树莓派上我安装了cmake和dlib

pip3 install cmake
pip3 install dlib

2、代码部分

dlib提取人脸特征中包含68个点

在这里插入图片描述

颚点= 0–16
右眉点= 17–21
左眉点= 22–26
鼻点= 27–35
右眼点= 36–41
左眼点= 42–47
口角= 48–60
嘴唇分数= 61–67

from gpiozero import LED
from time import sleep
from subprocess import check_call
import cv2
import numpy as np
import dlib

print(cv2.__version__)
def search_cap_num():
    for i in range(2000):
        cap = cv2.VideoCapture(i)
        cap_opened = cap.isOpened()
        if cap_opened == True:
            return i
        
cap_num = search_cap_num()
cap = cv2.VideoCapture(cap_num)

detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")

# 规定上嘴唇和下嘴唇连线的路径
lip_order_dlib = np.array([[48, 49, 50, 51, 52, 53, 54, 64, 63, 62, 61, 60, 48],
                           [48, 59, 58, 57, 56, 55, 54, 64, 65, 66, 67, 60, 48]]) - 48
lip_order_num = lip_order_dlib.shape[1]

while 1:
    landmarks_lip = []
    ret, frame = cap.read()
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    rects = detector(gray, 1)
    print('faces number:' + str(len(rects)))
    for (i, rect) in enumerate(rects):
        # 标记人脸中的68个landmark点
        landmarks = predictor(gray, rect)  
        for n in range(48, 68):
            x = landmarks.part(n).x
            y = landmarks.part(n).y
            landmarks_lip.append((x, y))
            # cv2.circle(img=img, center=(x, y), radius=3, color=(0, 255, 0), thickness=-1)
        for m in range(lip_order_num-1):
            cv2.line(frame, landmarks_lip[lip_order_dlib[0][m]], landmarks_lip[lip_order_dlib[0][m+1]], color=(0, 255, 0), thickness=2, lineType=8)
        for n in range(lip_order_num-1):
            cv2.line(frame, landmarks_lip[lip_order_dlib[1][n]], landmarks_lip[lip_order_dlib[1][n+1]], color=(0, 255, 0), thickness=2, lineType=8)
    cv2.imshow("face", frame)
    if cv2.waitKey(1) & 0xff == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()
# check_call(['sudo', 'poweroff'])

3、实验效果

请添加图片描述

效果总体而言比较卡顿,感觉分析一张图片花费时间在秒量级上。
要是仅仅是显示摄像头的图片还是很快的,没有任何卡顿,也就是说如果代码中不存在rects = detector(gray, 1)这种获取人脸区域的检测命令,那么运行速度大大提高,后面需要思考怎么在人脸检测下提高代码运行速度。

到此这篇关于树莓派上利用python+opencv+dlib实现嘴唇检测的实现的文章就介绍到这了,更多相关python+opencv+dlib嘴唇检测内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python 切片和range()用法说明

    python 切片和range()用法说明

    首先需要明白,可迭代对象,按照正数索引(正序)是从0开始的,按照负数索引(逆序)是从-1开始的
    2013-03-03
  • Python的多态性实例分析

    Python的多态性实例分析

    这篇文章主要介绍了Python的多态性,以实例形式深入浅出的分析了Python在面向对象编程中多态性的原理与实现方法,需要的朋友可以参考下
    2015-07-07
  • python经典100题之皮球掉落的几种解法

    python经典100题之皮球掉落的几种解法

    这篇文章主要给大家介绍了关于python经典100题之皮球掉落的几种解法,这个问题相信不少人都可以从网络上找到相对应的答案本文提供了3种解法,需要的朋友可以参考下
    2023-11-11
  • python绘制散点图和折线图的方法

    python绘制散点图和折线图的方法

    这篇文章主要为大家详细介绍了python绘制散点图和折线图的方法,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-04-04
  • Pycharm2020.1安装无法启动问题即设置中文插件的方法

    Pycharm2020.1安装无法启动问题即设置中文插件的方法

    这篇文章主要介绍了Pycharm2020.1安装无法启动问题即设置中文插件的操作方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧
    2020-08-08
  • 在Keras中实现保存和加载权重及模型结构

    在Keras中实现保存和加载权重及模型结构

    这篇文章主要介绍了在Keras中实现保存和加载权重及模型结构,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • Python中IO多路复用模块selector的用法详解

    Python中IO多路复用模块selector的用法详解

    selector 是一个实现了IO复用模型的python包,实现了IO多路复用模型的 select、poll 和 epoll 等函数,下面就跟随小编一起来学习一下它的具体使用吧
    2024-02-02
  • Python OpenCV 彩色与灰度图像的转换实现

    Python OpenCV 彩色与灰度图像的转换实现

    为了加快处理速度在图像处理算法中,往往需要把彩色图像转换为灰度图像,本文主要介绍了Python OpenCV 彩色与灰度图像的转换实现,感兴趣的可以了解一下
    2021-06-06
  • 使用Python删除PDF文档页面的页边距的操作代码

    使用Python删除PDF文档页面的页边距的操作代码

    在处理PDF文档时,有时候我们会遇到PDF文件带有较大的页边距的情况,这样过大的页边距不仅浪费了页面空间,而且在打印或电子阅读时也可能影响用户体验,本文使用的方法需要用到Spire.PDF for Python,PyPI:pip install spire.pdf,需要的朋友可以参考下
    2024-10-10
  • python之ImportError:模块引入异常问题

    python之ImportError:模块引入异常问题

    这篇文章主要介绍了python之ImportError:模块引入异常问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-06-06

最新评论