人工智能学习PyTorch实现CNN卷积层及nn.Module类示例分析
1.CNN卷积层
通过nn.Conv2d可以设置卷积层,当然也有1d和3d。
卷积层设置完毕,将设置好的输入数据,传给layer(),即可完成一次前向运算。也可以传给layer.forward,但不推荐。


2. 池化层
池化层的核大小一般是2*2,有2种方式:
maxpooling:选择数据中最大值输出
avgpooling:计算数据的均值并输出
通过这一层可以实现降采样。

3.数据批量标准化
Batch Normalize,在计算过程中,通常输入的数据都是0-255的像素数据,不方便计算,因此可以通过nn.BatchNorm1d方法进行标准化。
标准化后,可以通过running_mean, running_var获取全局的均值和方差。

4.nn.Module类
①各类函数
Linear, ReLU, Sigmoid, Conv2d, Dropout等等
②容器功能
我们可以直接在定义自己的层的时候,把所有我们需要用到的层及相关函数放进去。使用的时候直接调用即可。

③参数管理
在这个类中可以直接生成我们需要的参数,并且自动带上梯度的需求。

④调用GPU

⑤存储和加载
训练过程中可以根据需求,比如训练到某一个点的时候达到了最优,可以将其存储。

⑥训练、测试状态切换
直接调用根节点的train, eval就可以切换。

⑦ 创建自己的层

还有其他功能,但现在还不理解,因此先不往上写了。
5.数据增强
数据增强主要用在我们数据不够用的时候,对原来的数据进行调整,从而生成新的数据。比如一张图片,我们可以对其进行翻转、旋转、大小调整、切割等操作 。导入数据的时候即可进行,具体实现方式如下。

以上就是人工智能学习PyTorch实现CNN卷积层及nn.Module类示例分析的详细内容,更多关于PyTorch中CNN及nn.Module的资料请关注脚本之家其它相关文章!
相关文章
Python中用startswith()函数判断字符串开头的教程
这篇文章主要介绍了Python中用startswith()函数判断字符串开头的教程,startswith()函数的使用是Python学习中的基础知识,本文列举了一些不同情况下的使用结果,需要的朋友可以参考下2015-04-04
解决Python报错No module named Crypto问题
这篇文章主要介绍了解决Python报错No module named“Crypto”问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教2024-06-06


最新评论