Matlab、Python为工具解析数据可视化之美

 更新时间:2021年11月16日 14:45:23   作者:CaiBirdHu  
下面介绍一些数据可视化的作品(包含部分代码),主要是地学领域,可迁移至其他学科,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧

在我们科研、工作中,将数据完美展现出来尤为重要。
数据可视化是以数据为视角,探索世界。我们真正想要的是 — 数据视觉,以数据为工具,以可视化为手段,目的是描述真实,探索世界。
下面介绍一些数据可视化的作品(包含部分代码),主要是地学领域,可迁移至其他学科。

Example 1 :散点图、密度图(Python)

import numpy as np
import matplotlib.pyplot as plt

# 创建随机数
n = 100000
x = np.random.randn(n)
y = (1.5 * x) + np.random.randn(n)
fig1 = plt.figure()
plt.plot(x,y,'.r')
plt.xlabel('x')
plt.ylabel('y')
plt.savefig('2D_1V1.png',dpi=600)

nbins = 200
H, xedges, yedges = np.histogram2d(x,y,bins=nbins)
# H needs to be rotated and flipped
H = np.rot90(H)
H = np.flipud(H)
# 将zeros mask
Hmasked = np.ma.masked_where(H==0,H) 
# Plot 2D histogram using pcolor
fig2 = plt.figure()
plt.pcolormesh(xedges,yedges,Hmasked)  
plt.xlabel('x')
plt.ylabel('y')
cbar = plt.colorbar()
cbar.ax.set_ylabel('Counts')
plt.savefig('2D_2V1.png',dpi=600)
plt.show()

example-figure

在这里插入图片描述

Example 2 :双Y轴(Python)

import csv
import pandas as pd
import matplotlib.pyplot as plt
from datetime import datetime

data=pd.read_csv('LOBO0010-2020112014010.tsv',sep='\t')
time=data['date [AST]']
sal=data['salinity']
tem=data['temperature [C]']
print(sal)
DAT = []
for row in time:
DAT.append(datetime.strptime(row,"%Y-%m-%d %H:%M:%S"))

#create figure
fig, ax =plt.subplots(1)
# Plot y1 vs x in blue on the left vertical axis.
plt.xlabel("Date [AST]")
plt.ylabel("Temperature [C]", color="b")
plt.tick_params(axis="y", labelcolor="b")
plt.plot(DAT, tem, "b-", linewidth=1)
plt.title("Temperature and Salinity from LOBO (Halifax, Canada)")
fig.autofmt_xdate(rotation=50)
 
# Plot y2 vs x in red on the right vertical axis.
plt.twinx()
plt.ylabel("Salinity", color="r")
plt.tick_params(axis="y", labelcolor="r")
plt.plot(DAT, sal, "r-", linewidth=1)
  
#To save your graph
plt.savefig('saltandtemp_V1.png' ,bbox_inches='tight')
plt.show()

在这里插入图片描述

Example 3:拟合曲线(Python)

import csv
import numpy as np
import pandas as pd
from datetime import datetime
import matplotlib.pyplot as plt
import scipy.signal as signal

data=pd.read_csv('LOBO0010-20201122130720.tsv',sep='\t')
time=data['date [AST]']
temp=data['temperature [C]']
datestart = datetime.strptime(time[1],"%Y-%m-%d %H:%M:%S")
DATE,decday = [],[]
for row in time:
    daterow = datetime.strptime(row,"%Y-%m-%d %H:%M:%S")
    DATE.append(daterow)
    decday.append((daterow-datestart).total_seconds()/(3600*24))
# First, design the Buterworth filter
N  = 2    # Filter order
Wn = 0.01 # Cutoff frequency
B, A = signal.butter(N, Wn, output='ba')
# Second, apply the filter
tempf = signal.filtfilt(B,A, temp)
# Make plots
fig = plt.figure()
ax1 = fig.add_subplot(211)
plt.plot(decday,temp, 'b-')
plt.plot(decday,tempf, 'r-',linewidth=2)
plt.ylabel("Temperature (oC)")
plt.legend(['Original','Filtered'])
plt.title("Temperature from LOBO (Halifax, Canada)")
ax1.axes.get_xaxis().set_visible(False)
 
ax1 = fig.add_subplot(212)
plt.plot(decday,temp-tempf, 'b-')
plt.ylabel("Temperature (oC)")
plt.xlabel("Date")
plt.legend(['Residuals'])
plt.savefig('tem_signal_filtering_plot.png', bbox_inches='tight')
plt.show()

在这里插入图片描述

Example 4:三维地形(Python)

# This import registers the 3D projection
from mpl_toolkits.mplot3d import Axes3D  
from matplotlib import cbook
from matplotlib import cm
from matplotlib.colors import LightSource
import matplotlib.pyplot as plt
import numpy as np

filename = cbook.get_sample_data('jacksboro_fault_dem.npz', asfileobj=False)
with np.load(filename) as dem:
    z = dem['elevation']
    nrows, ncols = z.shape
    x = np.linspace(dem['xmin'], dem['xmax'], ncols)
    y = np.linspace(dem['ymin'], dem['ymax'], nrows)
x, y = np.meshgrid(x, y)

region = np.s_[5:50, 5:50]
x, y, z = x[region], y[region], z[region]
fig, ax = plt.subplots(subplot_kw=dict(projection='3d'))
ls = LightSource(270, 45)

rgb = ls.shade(z, cmap=cm.gist_earth, vert_exag=0.1, blend_mode='soft')
surf = ax.plot_surface(x, y, z, rstride=1, cstride=1, facecolors=rgb,
                       linewidth=0, antialiased=False, shade=False)
plt.savefig('example4.png',dpi=600, bbox_inches='tight')
plt.show()

在这里插入图片描述

Example 5:三维地形,包含投影(Python)

在这里插入图片描述

Example 6:切片,多维数据同时展现(Python)

在这里插入图片描述

Example 7:SSH GIF 动图展现(Matlab)

在这里插入图片描述

Example 8:Glider GIF 动图展现(Python)

在这里插入图片描述

Example 9:涡度追踪 GIF 动图展现

在这里插入图片描述

到此这篇关于数据可视化之美 -- 以Matlab、Python为工具的文章就介绍到这了,更多相关python数据可视化之美内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • PyQt5 关于Qt Designer的初步应用和打包过程详解

    PyQt5 关于Qt Designer的初步应用和打包过程详解

    Qt Designer中的操作方式十分灵活,其通过拖拽的方式放置控件可以随时查看控件效果。这篇文章主要介绍了PyQt5 关于Qt Designer的初步应用和打包,需要的朋友可以参考下
    2021-09-09
  • python绘图pyecharts+pandas的使用详解

    python绘图pyecharts+pandas的使用详解

    这篇文章主要介绍了python绘图pyecharts+pandas的使用详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-12-12
  • Python中Word文件自动化操作小结

    Python中Word文件自动化操作小结

    Python-docx是一个Python库,提供了对Microsoft Word(.docx文件)的读写和修改功能,本文主要介绍了如何使用Python-docx实现Word文件自动化操作,需要的可以参考下
    2024-04-04
  • Django 路由层URLconf的实现

    Django 路由层URLconf的实现

    这篇文章主要介绍了Django 路由层URLconf的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-12-12
  • Python调用ChatGPT的API实现文章生成

    Python调用ChatGPT的API实现文章生成

    最近ChatGPT大火,在3.5版本后开放了接口API,所以很多人开始进行实操,这里我就用python来为大家实现一下,如何调用API并提问返回文章的说明
    2023-03-03
  • Python实现最常见加密方式详解

    Python实现最常见加密方式详解

    这篇文章主要介绍了Python实现最常见加密方式详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-07-07
  • Python排序算法之插入排序及其优化方案详解

    Python排序算法之插入排序及其优化方案详解

    今天给大家带来的文章是关于Python的相关知识,文章围绕着Python插入排序及其优化方案展开,文中有非常详细的介绍及代码示例,需要的朋友可以参考下
    2021-06-06
  • Python selenium使用autoIT上传附件过程详解

    Python selenium使用autoIT上传附件过程详解

    这篇文章主要介绍了Python selenium使用autoIT上传附件过程详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-05-05
  • Python提取转移文件夹内所有.jpg文件并查看每一帧的方法

    Python提取转移文件夹内所有.jpg文件并查看每一帧的方法

    今天小编就为大家分享一篇Python提取转移文件夹内所有.jpg文件并查看每一帧的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-06-06
  • python使用pandas实现数据分割实例代码

    python使用pandas实现数据分割实例代码

    这篇文章主要介绍了python使用pandas实现数据分割实例代码,介绍了使用pandas实现对dataframe格式的数据分割成时间跨度相等的数据块,分享了相关代码示例,小编觉得还是挺不错的,具有一定借鉴价值,需要的朋友可以参考下
    2018-01-01

最新评论