利用python做数据拟合详情

 更新时间:2022年01月24日 12:58:49   作者:图様  
这篇文章主要介绍了利用python做数据拟合,下面文章围绕如何让利用python做数据拟合的相关资料展开详细内容,需要的朋友可以参考一下,希望对大家有所帮助

1、例子:拟合一种函数Func,此处为一个指数函数。

出处:

SciPy v1.1.0 Reference Guide

#Header
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit

#Define a function(here a exponential function is used)
def func(x, a, b, c):
 return a * np.exp(-b * x) + c

#Create the data to be fit with some noise
xdata = np.linspace(0, 4, 50)
y = func(xdata, 2.5, 1.3, 0.5)
np.random.seed(1729)
y_noise = 0.2 * np.random.normal(size=xdata.size)
ydata = y + y_noise
plt.plot(xdata, ydata, 'bo', label='data')

#Fit for the parameters a, b, c of the function func:
popt, pcov = curve_fit(func, xdata, ydata)
popt #output: array([ 2.55423706, 1.35190947, 0.47450618])
plt.plot(xdata, func(xdata, *popt), 'r-',
 label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt))

#In the case of parameters a,b,c need be constrainted
#Constrain the optimization to the region of 
#0 <= a <= 3, 0 <= b <= 1 and 0 <= c <= 0.5
popt, pcov = curve_fit(func, xdata, ydata, bounds=(0, [3., 1., 0.5]))
popt #output: array([ 2.43708906, 1. , 0.35015434])
plt.plot(xdata, func(xdata, *popt), 'g--',
 label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt))

#Labels
plt.title("Exponential Function Fitting")
plt.xlabel('x coordinate')
plt.ylabel('y coordinate')
plt.legend()
leg = plt.legend()  # remove the frame of Legend, personal choice
leg.get_frame().set_linewidth(0.0) # remove the frame of Legend, personal choice
#leg.get_frame().set_edgecolor('b') # change the color of Legend frame
#plt.show()

#Export figure
#plt.savefig('fit1.eps', format='eps', dpi=1000)
plt.savefig('fit1.pdf', format='pdf', dpi=1000, figsize=(8, 6), facecolor='w', edgecolor='k')
plt.savefig('fit1.jpg', format='jpg', dpi=1000, figsize=(8, 6), facecolor='w', edgecolor='k')

上面一段代码可以直接在spyder中运行。得到的JPG导出图如下:

2. 例子:拟合一个Gaussian函数

出处:LMFIT: Non-Linear Least-Squares Minimization and Curve-Fitting for Python

#Header
import numpy as np
import matplotlib.pyplot as plt
from numpy import exp, linspace, random
from scipy.optimize import curve_fit

#Define the Gaussian function
def gaussian(x, amp, cen, wid):
 return amp * exp(-(x-cen)**2 / wid)

#Create the data to be fitted
x = linspace(-10, 10, 101)
y = gaussian(x, 2.33, 0.21, 1.51) + random.normal(0, 0.2, len(x))
np.savetxt ('data.dat',[x,y])  #[x,y] is is saved as a matrix of 2 lines

#Set the initial(init) values of parameters need to optimize(best)
init_vals = [1, 0, 1] # for [amp, cen, wid]

#Define the optimized values of parameters
best_vals, covar = curve_fit(gaussian, x, y, p0=init_vals)
print(best_vals) # output: array [2.27317256  0.20682276  1.64512305]

#Plot the curve with initial parameters and optimized parameters
y1 = gaussian(x, *best_vals) #best_vals, '*'is used to read-out the values in the array
y2 = gaussian(x, *init_vals) #init_vals
plt.plot(x, y, 'bo',label='raw data')
plt.plot(x, y1, 'r-',label='best_vals')
plt.plot(x, y2, 'k--',label='init_vals')
#plt.show()

#Labels
plt.title("Gaussian Function Fitting")
plt.xlabel('x coordinate')
plt.ylabel('y coordinate')
plt.legend()
leg = plt.legend()  # remove the frame of Legend, personal choice
leg.get_frame().set_linewidth(0.0) # remove the frame of Legend, personal choice
#leg.get_frame().set_edgecolor('b') # change the color of Legend frame
#plt.show()

#Export figure
#plt.savefig('fit2.eps', format='eps', dpi=1000)
plt.savefig('fit2.pdf', format='pdf', dpi=1000, figsize=(8, 6), facecolor='w', edgecolor='k')
plt.savefig('fit2.jpg', format='jpg', dpi=1000, figsize=(8, 6), facecolor='w', edgecolor='k')

上面一段代码可以直接在spyder中运行。得到的JPG导出图如下:

3. 用一个lmfit的包来实现2中的Gaussian函数拟合

需要下载lmfit这个包,下载地址:

https://pypi.org/project/lmfit/#files

下载下来的文件是.tar.gz格式,在MacOS及Linux命令行中解压,指令:

将其中的lmfit文件夹复制到当前project目录下。

上述例子2中生成了data.dat,用来作为接下来的方法中的原始数据。

 出处:

Modeling Data and Curve Fitting

#Header
import numpy as np
import matplotlib.pyplot as plt
from numpy import exp, loadtxt, pi, sqrt
from lmfit import Model

#Import the data and define x, y and the function
data = loadtxt('data.dat')
x = data[0, :]
y = data[1, :]
def gaussian1(x, amp, cen, wid):
 return (amp / (sqrt(2*pi) * wid)) * exp(-(x-cen)**2 / (2*wid**2))

#Fitting
gmodel = Model(gaussian1)
result = gmodel.fit(y, x=x, amp=5, cen=5, wid=1) #Fit from initial values (5,5,1)
print(result.fit_report())

#Plot
plt.plot(x, y, 'bo',label='raw data')
plt.plot(x, result.init_fit, 'k--',label='init_fit')
plt.plot(x, result.best_fit, 'r-',label='best_fit')
#plt.show()


#Labels
plt.title("Gaussian Function Fitting")
plt.xlabel('x coordinate')
plt.ylabel('y coordinate')
plt.legend()
leg = plt.legend()  # remove the frame of Legend, personal choice
leg.get_frame().set_linewidth(0.0) # remove the frame of Legend, personal choice
#leg.get_frame().set_edgecolor('b') # change the color of Legend frame
#plt.show()

#Export figure
#plt.savefig('fit3.eps', format='eps', dpi=1000)
plt.savefig('fit3.pdf', format='pdf', dpi=1000, figsize=(8, 6), facecolor='w', edgecolor='k')
plt.savefig('fit3.jpg', format='jpg', dpi=1000, figsize=(8, 6), facecolor='w', edgecolor='k')

上面这一段代码需要按指示下载lmfit包,并且读取例子2中生成的data.dat

得到的JPG导出图如下:

到此这篇关于利用python做数据拟合详情的文章就介绍到这了,更多相关python做数据拟合内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 利用Opencv实现图片的油画特效实例

    利用Opencv实现图片的油画特效实例

    这篇文章主要给大家介绍了关于利用Opencv实现图片的油画特效的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-02-02
  • django之从html页面表单获取输入的数据实例

    django之从html页面表单获取输入的数据实例

    这篇文章主要介绍了django之从html页面表单获取输入的数据实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-03-03
  • Scrapy使用的基本流程与实例讲解

    Scrapy使用的基本流程与实例讲解

    今天小编就为大家分享一篇关于Scrapy使用的基本流程与实例讲解,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
    2018-10-10
  • python二维列表一维列表的互相转换实例

    python二维列表一维列表的互相转换实例

    今天小编就为大家分享一篇python二维列表一维列表的互相转换实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-07-07
  • Python基于多线程操作数据库相关问题分析

    Python基于多线程操作数据库相关问题分析

    这篇文章主要介绍了Python基于多线程操作数据库相关问题,结合实例形式分析了Python使用数据库连接池并发操作数据库避免超时、连接丢失相关实现技巧,需要的朋友可以参考下
    2018-07-07
  • 找Python安装目录,设置环境路径以及在命令行运行python脚本实例

    找Python安装目录,设置环境路径以及在命令行运行python脚本实例

    这篇文章主要介绍了找Python安装目录,设置环境路径以及在命令行运行python脚本实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-03-03
  • python解决方案:WindowsError: [Error 2]

    python解决方案:WindowsError: [Error 2]

    使用Python的rename()函数重命名文件时出现问题,提示 WindowsError: [Error 2] 错误,需要的朋友可以参考下
    2016-08-08
  • MATLAB 全景图切割及盒图显示的实现步骤

    MATLAB 全景图切割及盒图显示的实现步骤

    本文给大家分两部分介绍,第一部分通过图文的形式给大家介绍了全景图切割的代码,第二部分给大家介绍了盒图展示效果的实现代码,对MATLAB 全景图切割相关知识感兴趣的朋友,跟随小编一起看看吧
    2021-05-05
  • Python实现爬取亚马逊数据并打印出Excel文件操作示例

    Python实现爬取亚马逊数据并打印出Excel文件操作示例

    这篇文章主要介绍了Python实现爬取亚马逊数据并打印出Excel文件操作,结合实例形式分析了Python针对亚马逊图书数据的爬取操作,以及数据打印输出Excel相关实现技巧,需要的朋友可以参考下
    2019-05-05
  • Python模拟登陆网页的三种方法小结

    Python模拟登陆网页的三种方法小结

    如何使用Python模拟登陆网页,尤其是在涉及到复杂的认证机制时?这篇文章将详细介绍Python模拟登陆网页的三种方法,以及如何绕过一些常见的安全防护措施,需要的朋友可以参考下
    2024-01-01

最新评论