Python+OpenCV六种实时图像处理详细讲解

 更新时间:2021年11月17日 16:22:35   作者:不脱发的程序猿  
OpenCV常用的图像处理为阈值二值化、边缘检测、轮廓检测、高斯滤波、色彩转换、调节对比度。本文主要介绍了利用Python和OpenCV对实时图像进行上述六种操作的详细讲解,感兴趣的可以了解一下。

初学OpenCV图像处理的小伙伴肯定对什么高斯函数、滤波处理、阈值二值化等特性非常头疼,这里给各位分享一个小项目,可通过摄像头实时动态查看各类图像处理的特点,也可对各位调参、测试有一定帮助。

1、导入库文件

这里主要使用PySimpleGUI、cv2和numpy库文件,PySimpleGUI库文件实现GUI可视化,cv2库文件是Python的OpenCV接口文件,numpy库文件实现数值的转换和运算,均可通过pip导入。

import PySimpleGUI as sg  #pip install pysimplegui
import cv2  #pip install opencv-python
import numpy as np #pip install numpy

2、设计GUI

基于PySimpleGUI库文件实现GUI设计,本项目界面设计较为简单,设计800X400尺寸大小的框图,浅绿色背景,主要由摄像头界面区域和控制按钮区域两部分组成。效果如下所示:

GUI代码如下所示:

    #背景色
    sg.theme('LightGreen')
 
    #定义窗口布局
    layout = [
      [sg.Image(filename='', key='image')],
      [sg.Radio('None', 'Radio', True, size=(10, 1))],
      [sg.Radio('threshold', 'Radio', size=(10, 1), key='thresh'),
       sg.Slider((0, 255), 128, 1, orientation='h', size=(40, 15), key='thresh_slider')],
      [sg.Radio('canny', 'Radio', size=(10, 1), key='canny'),
       sg.Slider((0, 255), 128, 1, orientation='h', size=(20, 15), key='canny_slider_a'),
       sg.Slider((0, 255), 128, 1, orientation='h', size=(20, 15), key='canny_slider_b')],
      [sg.Radio('contour', 'Radio', size=(10, 1), key='contour'),
       sg.Slider((0, 255), 128, 1, orientation='h', size=(20, 15), key='contour_slider'),
       sg.Slider((0, 255), 80, 1, orientation='h', size=(20, 15), key='base_slider')],
      [sg.Radio('blur', 'Radio', size=(10, 1), key='blur'),
       sg.Slider((1, 11), 1, 1, orientation='h', size=(40, 15), key='blur_slider')],
      [sg.Radio('hue', 'Radio', size=(10, 1), key='hue'),
       sg.Slider((0, 225), 0, 1, orientation='h', size=(40, 15), key='hue_slider')],
      [sg.Radio('enhance', 'Radio', size=(10, 1), key='enhance'),
       sg.Slider((1, 255), 128, 1, orientation='h', size=(40, 15), key='enhance_slider')],
      [sg.Button('Exit', size=(10, 1))]
    ]
 
    #窗口设计
    window = sg.Window('OpenCV实时图像处理',
               layout,
               location=(800, 400),
               finalize=True)

3、调用摄像头

打开电脑内置摄像头,将数据显示在GUI界面上,效果如下所示:

代码如下所示:

    #打开内置摄像头
    cap = cv2.VideoCapture(0)
    while True:
        event, values = window.read(timeout=0, timeout_key='timeout')
 
        #实时读取图像
        ret, frame = cap.read()
 
        #GUI实时更新
        imgbytes = cv2.imencode('.png', frame)[1].tobytes()
        window['image'].update(data=imgbytes)
 
    window.close()

4、实时图像处理

4.1、阈值二值化

进行阈值二值化操作,大于阈值values['thresh_slider']的,使用255表示,小于阈值values['thresh_slider']的,使用0表示,效果如下所示:

 代码如下所示:

if values['thresh']:
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2LAB)[:, :, 0]
    frame = cv2.threshold(frame, values['thresh_slider'], 255, cv2.THRESH_BINARY)[1]

4.2、边缘检测

进行边缘检测,values['canny_slider_a']表示最小阈值,values['canny_slider_b']表示最大阈值,效果如下所示:

代码如下所示:

if values['canny']:
    frame = cv2.Canny(frame, values['canny_slider_a'], values['canny_slider_b'])

4.3、轮廓检测

轮廓检测是形状分析和物体检测和识别的有用工具,连接所有连续点(沿着边界)的曲线,具有相同的颜色或强度,效果如下所示:

 代码如下所示:

if values['contour']:
    hue = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
    hue = cv2.GaussianBlur(hue, (21, 21), 1)
    hue = cv2.inRange(hue, np.array([values['contour_slider'], values['base_slider'], 40]),
                      np.array([values['contour_slider'] + 30, 255, 220]))
    cnts= cv2.findContours(hue, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
    cv2.drawContours(frame, cnts, -1, (0, 0, 255), 2)

4.4、高斯滤波

进行高斯滤波,(21, 21)表示高斯矩阵的长与宽都是21,标准差取values['blur_slider'],效果如下所示:

 代码如下所示:

if values['blur']:
    frame = cv2.GaussianBlur(frame, (21, 21), values['blur_slider'])

4.5、色彩转换

色彩空间的转化,HSV转换为BGR,效果如下所示:

 代码如下所示:

if values['hue']:
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
    frame[:, :, 0] += int(values['hue_slider'])
    frame = cv2.cvtColor(frame, cv2.COLOR_HSV2BGR)

4.6、调节对比度

增强对比度,使图像中的细节看起来更加清晰,效果如下所示:

  代码如下所示:

if values['enhance']:
    enh_val = values['enhance_slider'] / 40
    clahe = cv2.createCLAHE(clipLimit=enh_val, tileGridSize=(8, 8))
    lab = cv2.cvtColor(frame, cv2.COLOR_BGR2LAB)
    lab[:, :, 0] = clahe.apply(lab[:, :, 0])
    frame = cv2.cvtColor(lab, cv2.COLOR_LAB2BGR)

5、退出系统

直接break即可跳出循环。

if event == 'Exit' or event is None:
    break

以上就是Python+OpenCV六种实时图像处理详细讲解的详细内容,更多关于Python+OpenCV实时图像处理的资料请关注脚本之家其它相关文章!

相关文章

  • 使用Python清空特定路径下所有文件夹下中的文件

    使用Python清空特定路径下所有文件夹下中的文件

    这篇文章主要为大家详细介绍了如何使用python清空特定路径下所有文件夹下中的文件并把空文件夹要保留下来,感兴趣的小伙伴可以跟随小编一起学习一下
    2025-01-01
  • python中15种3D绘图函数总结

    python中15种3D绘图函数总结

    这篇文章主要为大家详细介绍了python中15种3D绘图函数的用法,文中的示例代码讲解详细,具有一定的学习价值,感兴趣的小伙伴可以跟随小编一起了解一下
    2023-09-09
  • 使用python来调用CAN通讯的DLL实现方法

    使用python来调用CAN通讯的DLL实现方法

    今天小编就为大家分享一篇使用python来调用CAN通讯的DLL实现方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • Python中使用platform模块获取系统信息的用法教程

    Python中使用platform模块获取系统信息的用法教程

    这里我们整理了Python中使用platform模块获取系统信息的用法教程,包括操作系统与Python环境以及系统的环境变量等信息的获取方法:
    2016-07-07
  • Python 解决火狐浏览器不弹出下载框直接下载的问题

    Python 解决火狐浏览器不弹出下载框直接下载的问题

    这篇文章主要介绍了Python 解决火狐浏览器不弹出下载框直接下载的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-03-03
  • 对python3中, print横向输出的方法详解

    对python3中, print横向输出的方法详解

    今天小编就为大家分享一篇对python3中, print横向输出的方法详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • 找不到Anaconda prompt终端的原因分析及解决方案

    找不到Anaconda prompt终端的原因分析及解决方案

    因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜单部分的初始化,故找不到,这篇文章主要介绍了找不到Anaconda prompt终端的原因分析及解决方案,需要的朋友可以参考下
    2025-03-03
  • Python Pytorch学习之图像检索实践

    Python Pytorch学习之图像检索实践

    随着电子商务和在线网站的出现,图像检索在我们的日常生活中的应用一直在增加。图像检索的基本本质是根据查询图像的特征从集合或数据库中查找图像。本文将利用Pytorch实现图像检索,需要的可以参考一下
    2022-04-04
  • Python中Async语法协程的实现

    Python中Async语法协程的实现

    这篇文章主要介绍了Python中Async语法协程的实现,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-06-06
  • Python中参数打包和解包的实现

    Python中参数打包和解包的实现

    在Python中,打包和解包参数是一种操作方式,可以将多个参数打包成一个元组或字典,也可以将一个元组或字典解包成多个参数,本文就来介绍一下如何使用
    2023-09-09

最新评论