Python写代码的七条重要技巧介绍

 更新时间:2021年12月03日 10:42:54   作者:程序员涵涵2021  
大家好,本篇文章主要讲的是Python写代码的七条重要技巧介绍,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下,方便下次浏览

前言

写出能完成功能的程序每个程序员都可以搞定,但能写出优雅的程序的程序员却寥寥无几,因此程序写的优雅与否则是区分顶级程序员与一般程序员的终极指标所在。

那身为一名 Pythoner,有哪些技巧能让我们写出优雅的 Python 代码呢,今天就给大家介绍七个能快速提升代码逼格的重要技巧。

0x00 规范命名

没有哪个程序员会抗拒一段命名规范的代码!

命名作为编程界的一大难题,实属难倒了很多人。不知道你是否还记得自己那些曾经很沙雕的命名呢。

a,b,c  x,y,z a1,a2 4_s,4s... 
def do_something():
def fun():
...

相信你看到上面的命名也是一头雾水,好的命名不一定要写的多优雅,最起码要做到见名识意。

统一的命名风格可以让代码看起来更简洁,风格更统一,这样阅读者一看就知道这个变量或者函数是用来干嘛的,不至于猜半天浪费过多的精力在不必要的事情上。

0x01 面向对象

Python 是一门面向对象语言,因此我们有必要熟悉面向对象的一些设计原则。

单一职责原则是指一个函数只做一件事,不要将多个功能集中在同一个函数中,不要大而全,要小而精。这样,当有需求变化时,我们只需要修改对应的部分即可,程序应对变化的能力明显提升。

开放封闭原则是指对扩展开放,对修改关闭。

写程序的都知道,甲方是善变的,今天说用这种方式实现,明天可能就变卦了,这太正常了。

所以我们写程序时一定要注意程序的可扩展性,当甲方改动需求时,我们尽可能的少改动或者不改动原有代码,而是通过添加新的实现类来扩展功能,这意味着你系统的原有功能是不会遭到破坏的,则稳定性有极大提升。

接口隔离原则是指调用方不应该依赖其不需要的接口,接口间的依赖关系应当建立在最小功能接口原则之上。

单一职责和接口隔离都是为了提高类的内聚性,降低他们之间的耦合性。这是面向对象封装思想的完美体现。

0x02 使用 with

平时写代码难免会遇到操作文件的需求,一般都是用 open() 函数来打开一个文件,最后等操作完成之后通过 close() 函数来关闭文件,但有时候写多了难免会觉得很麻烦,难道不可以在我操作完自动关闭文件么,可以的。

使用 with 来操作文件无需考虑关闭问题,我们只需要关心核心的业务逻辑即可。

with open('tmp.txt', 'w') as f:
    f.write('xxx')
    ...

0x03 使用 get

妙不可言!写出优雅的 Python 代码的七条重要技巧

当我们从字典中获取一个不存在的 key 时,如果是用中括号的方式来获取的话程序会返回 KeyError。这时候建议通过 get() 函数来获取。

同时通过 get() 函数来获取 value 时还可以设置默认值 default_value,当 key 不存在时则会返回 default_value。

0x04 提前返回

平时写的代码中少不了 if else 等控制语句,但有时候有的小伙伴喜欢将 if else 嵌套好多层,过几个月之后自己都看不明白当时写的啥。

比如下面这个程序,根据考试成绩来做评级。

score = 100
if score >= 60: # 及格
    if score >= 70: # 中等
        if score >= 80: # 良好 
            if score >= 90: # 优秀
                if score >= 100: # 满分
                    print("满分")
                else:
                    print("优秀")
            else:
                print("良好")
        else:
            print("中等")
    else:
        print("及格")
else:
    print("不及格")
print("程序结束")

这种代码一看就想打人有木有,可读性极差。

代码的逻辑就是判断分数是否在一个区间,然后给出与之相匹配的评级,既然如此,则可以改写如下:

def get_score_level(score):
    if score >= 100: # 满分
        print("满分")
        return
 
    if score >= 90: # 优秀
        print("优秀")
        return
 
    if score >= 80: # 良好
        print("良好")
        return    
 
    if score >= 70: # 中等
        print("中等")
        return
 
    if score >= 60: # 及格
        print("及格")
        return
 
    print("不及格")
    print("程序结束")

这种处理方式是极其优雅的,从上往下清晰明了,大大增加了代码的可读性和可维护性。

0x05 生成器

我们都知道通过列表生成式可以直接创建一个新的列表,但受机器内存限制,列表的容量肯定是有限的。如果列表里面的数据是通过某种规律推导计算出来的,那是否可以在迭代过程中不断的推算出后面的元素呢,这样就不必一次性创建完

整个列表,按需使用即可,这时候生成器就派上用场了。

妙不可言!写出优雅的 Python 代码的七条重要技巧

0x06 装饰器

试想一下如下的场景,当后端接收到用户请求后,需要对用户进行鉴权,总不能将鉴权的代码复制来复制去吧;还有我们的项目都是需要记录日志的,这两种情况最适合使用装饰器。事实上 Flask 框架中就大量使用装饰器来进行鉴权操作。

一切皆对象!

在 Python 中我们可以在函数中定义函数,也可以从函数中返回函数,还可以将函数作为参数传给另一个函数。

def hi(name="yasoob"):
    print("now you are inside the hi() function")
 
    def greet():
        return "now you are in the greet() function"
 
    def welcome():
        return "now you are in the welcome() function"
 
    print(greet())
    print(welcome())
    print("now you are back in the hi() function")
 
hi()
# output
# now you are inside the hi() function
# now you are in the greet() function
# now you are in the welcome() function
# now you are back in the hi() function

在上面的代码中,我们在 hi() 函数内部定义了两个新的函数,无论何时调用 hi()其内部的函数都将会被调用。

def hi(name="yasoob"):
    def greet():
        return "now you are in the greet() function"
 
    def welcome():
        return "now you are in the welcome() function"
 
    if name == "yasoob":
        return greet
    else:
        return welcome
 
a = hi()
print(a)
print(a())
 
# output
# <function hi.<locals>.greet at 0x7fe3e547a0e0>
# now you are in the greet() function

在这个例子中,由于默认参数 name = yasoob 因此 a = hi() 返回的是 greet函数。a 也就指向了 hi() 函数内部的 greet() 函数。

def hi():
    return "hi yasoob!"
 
def doSomethingBeforeHi(func):
    print("I am doing some boring work before executing hi()")
    print(func())
 
doSomethingBeforeHi(hi)
 
# output
# I am doing some boring work before executing hi()
# hi yasoob!

在最后这个例子中,我们将 hi() 函数传递给了另外一个函数,并且他们还很愉快的执行了。

现在,让我们来看看 Python 中的装饰器吧。

def a_new_decorator(a_func):
 
    def wrapTheFunction():
        print("I am doing some boring work before executing a_func()")
 
        a_func()
 
        print("I am doing some boring work after executing a_func()")
 
    return wrapTheFunction
 
def a_function_requiring_decoration():
    print("I am the function which needs some decoration to remove my foul smell")
 
 
a_new_function_requiring_decoration = a_new_decorator(a_function_requiring_decoration)
 
a_new_function_requiring_decoration()
 
# output
# I am doing some boring work before executing a_func()
# I am the function which needs some decoration to remove my foul smell
# I am doing some boring work after executing a_func()

看懂了没,就是上面我们介绍的基础操作的组合。事实上这就是 python 中的装饰器所做的事,通过这种方式来修改一个函数的行为。

但如果每次都这么写的话未免也太麻烦了吧,因此 python 为我们提供了一个便捷操作 @。

def a_new_decorator(a_func):
  ...
 
@a_new_decorator
def a_function_requiring_decoration():
    print("I am the function which needs some decoration to remove my foul smell")
 
a_function_requiring_decoration()
 
# output
# I am doing some boring work before executing a_func()
# I am the function which needs some decoration to remove my foul smell
# I am doing some boring work after executing a_func()

到此这篇关于Python写代码的七条重要技巧介绍的文章就介绍到这了,更多相关Python写代码技巧内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python语言编写智力问答小游戏功能

    Python语言编写智力问答小游戏功能

    这篇文章主要介绍了使用Python代码语言简单编写一个轻松益智的小游戏,代码简单易懂,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-10-10
  • 解决Pytorch修改预训练模型时遇到key不匹配的情况

    解决Pytorch修改预训练模型时遇到key不匹配的情况

    这篇文章主要介绍了解决Pytorch修改预训练模型时遇到key不匹配的情况,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-06-06
  • Python常见文件操作的函数示例代码

    Python常见文件操作的函数示例代码

    Python常见文件操作的函数示例代码,学习python的朋友可以参考下。
    2011-11-11
  • 如何用python合并多个有规则命名的nc文件

    如何用python合并多个有规则命名的nc文件

    在地学领域,nc格式的文件可谓随处可见,这种文件可以存储多维数字矩阵,下面这篇文章主要给大家介绍了关于如何用python合并多个有规则命名的nc文件的相关资料,需要的朋友可以参考下
    2022-03-03
  • 聊聊python里如何用Borg pattern实现的单例模式

    聊聊python里如何用Borg pattern实现的单例模式

    这篇文章主要介绍了聊聊python里如何用Borg pattern实现的单例模式,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2019-06-06
  • Numpy中arange()的用法及说明

    Numpy中arange()的用法及说明

    Numpy的arange()函数用于在指定间隔内生成均匀间隔的数组,它接受开始值、停止值和步长来创建数组,返回的是ndarray类型,如果没有提供dtype,则会根据其他参数推断数据类型,对于浮点类型参数,结果数组的长度计算方式为ceil((stop-start)/step)
    2024-10-10
  • Python3连接SQLServer、Oracle、MySql的方法

    Python3连接SQLServer、Oracle、MySql的方法

    这篇文章较详细的给大家介绍了Python3连接SQLServer、Oracle、MySql的方法,非常不错,具有一定的参考借鉴价值,需要的朋友参考下吧
    2018-06-06
  • Pytorch中的自动求梯度机制和Variable类实例

    Pytorch中的自动求梯度机制和Variable类实例

    今天小编就为大家分享一篇Pytorch中的自动求梯度机制和Variable类实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02
  • python学习实操案例(二)

    python学习实操案例(二)

    这篇文章主要介绍了python学习实操案例,主要实操内容有二进制转换、为自己手机充值、、计算能量的消耗等,需要的小伙伴可以参考一下
    2022-02-02
  • Python中使用logging模块代替print(logging简明指南)

    Python中使用logging模块代替print(logging简明指南)

    这篇文章主要介绍了Python中使用logging模块代替print的好处说明,主旨是logging模块简明指南,logging模块的使用方法介绍,需要的朋友可以参考下
    2014-07-07

最新评论