OpenCV图像处理之七种常用图像几何变换

 更新时间:2021年12月13日 16:32:13   作者:JeffchenITM  
这篇文章主要介绍了OpenCV图像处理中常用的几个图像几何变换:裁剪、放大、缩小、平移、错切、镜像、旋转、透视等。文中示例代码非常详细,需要的朋友可以参考一下

0 程序环境与所学函数

本章程序运行需要导入下面三个库,并定义了一个显示图像的函数

所学函数

##放大、缩小
cv.resize(img,dsize,[interpolation])
##平移变换
M = np.array([[...]], dtype=np.float32)
cv.warpAffine(img, M, dsize)
##镜像变换
cv.flip(img, 1) # 垂直镜像
cv.flip(img, 0) # 水平镜像
cv.flit(img, -1) # 水平垂直同时进行
##旋转变换
M = cv.getRotationMatrix2D(center, angle, scale)
img_rotate = cv.rotate(img, cv.ROTATE_90_CLOCKWISE)
##透视变换
M = cv.getPerspectiveTransform(src, dst)
img = cv.warpPerspective(img, M, dsize)

1 裁剪、放大、缩小

读入图像

img =  cv.imread('pic/rabbit500x333.jpg')
show(img)

显示

裁剪:数组选择方法(冒号)

#裁剪
rabbit = img[150:450:] #限定行数,列数和三通道
show(rabbit)

显示

放大和缩小:resize()函数

插值方法

程序实现

#放大缩小
#cv.resize(img,dsize,[interpolation])  dsize表示大小,[interpolation]是插值方法,可选,有默认值
img2 = cv.resize(img,(500,400))  #放大为宽500高400
#使用定义插值方法
#一般来说放大地话选择LINEAR方法,缩小选择AREA方法
img3 = cv.resize(img,(500,400),interpolation=cv.INTER_NEAREST)
show(np.hstack([img2,img3]))

显示

2 平移变换

原理、平移矩阵推导

读入图像

img = cv.imread('pic/rabbit500x333.jpg')
show(img)

显示

程序实现

# M = np.array([[...]],dtype=np.float32) 
# cv.warAffine(img,M,dsize) cv里面图像仿射变换函数,M是上面矩阵,dsize是输出图像大小
M=np.array([
    [1,0,100],
    [0,1,50]
],dtype=np.float32)  #水平向右平移100个像素点,竖直向下平移50个像素点,原理见理论部分
 
img2 = cv.warpAffine(img,M,(333,500))
show(img2)

显示

3 错切变换

原理、错切矩阵推导

读入图像

img = cv.imread('pic/rabbit500x333.jpg')
show(img)

显示

水平错切

M = np.array([
    [1,0.2,0],
    [0,1,0]
],dtype=np.float32)
 
img3 = cv.warpAffine(img,M,(533,500))
show(img3)

显示

垂直错切

M = np.array([
    [1,0,0],
    [0.3,1,0]
],dtype=np.float32)
 
img3 = cv.warpAffine(img,M,(333,700))
show(img3)

显示

4 镜像变换

原理、镜像矩阵推导

读入图像

img = cv.imread('pic/rabbit500x333.jpg')
show(img)

显示

水平镜像

Mx = np.array([
    [-1,0,333],
    [0,1,0]
],dtype = np.float32)
img2 = cv.warpAffine(img,Mx,(333,500))  #仿射变换函数
show(img2)

显示

垂直镜像

My = np.array([
    [1,0,0],
    [0,-1,500]
],dtype=np.float32)
 
img3 = cv.warpAffine(img,My,(333,500))
show(img3)

显示

opencv内置函数实现镜像变换

#垂直镜像 cv.flip(img,1)

#水平镜像 cv.flip(img,0)

#水平垂直同时进行 cv.flip(img,-1)

程序实现

img4 = cv.flip(img,1)  #垂直镜像
img5 = cv.flip(img,0)  #水平镜像
img6 = cv.flip(img,-1) #水平垂直镜像同时进行
 
show(np.hstack([img4,img5,img6]))

显示

5 旋转变换

原理、旋转矩阵推导

读入图像

img = cv.imread('pic/rabbit500x333.jpg')
show(img)

显示

图像旋转

beta = np.pi/4
#旋转矩阵
M  = np.array([
    [np.cos(beta),np.sin(beta),0],
    [-np.sin(beta),np.cos(beta),0]
],dtype=np.float32)
 
img2 = cv.warpAffine(img,M,(633,300))
show(img2)

显示

opencv内置获取旋转矩阵函数:

M = cv.getRotationMatrix2D(center,angle,scale)  

center是旋转中心,angle是旋转角度,scale表示放大还是缩小

用上面函数获取旋转矩阵并实现图像旋转

h,w,c = img.shape  #获取图像的高度和宽度,方便后面设置旋转中心
 
M2 = cv.getRotationMatrix2D((w//2,h//2),45,1)
img3 = cv.warpAffine(img,M2,(533,500))  #仿射函数实现
show(img3

显示

opencv内置实现图像旋转函数

img_rotate =cv.rotate(img,cv.ROTATE_90_COUNTERCLOCKWISE)

只能进行90度倍数的旋转

程序实现

# 逆时针旋转90度
img_rotate = cv.rotate(img,cv.ROTATE_90_COUNTERCLOCKWISE)
show(img_rotate)
 

显示

6 透视变换

M = cv.getPerspectiveTransform(str,dst)

str:原始图像矩阵端点位置,dst:目标图像矩阵位置

img2 = cv.warpPerspective(img,M,(w,h))

读入图像

img = cv.imread('pic/parthenon500x750.jpg')
show(img)

显示

程序实现

#在原图中定位四个点,这里找的是柱子前面四个点的大概位置,眼睛观察法找的
str = np.array([
    [210,50],
    [610,270],
    [650,470],
    [150,450]
],dtype=np.float32)
 
#目标图像中矩阵
dst = np.array([
    [150,50],
    [650,50],
    [650,470],
    [150,470]
],dtype=np.float32)
 
h,w,c = img.shape
 
#透视变换将一个类似矩形的图形拉成一个矩形
M = cv.getPerspectiveTransform(str,dst)
img2 = cv.warpPerspective(img,M,(w,h))
show(img2)

显示

应用:车道检测、图片矫正

7 最近邻插值、双线性插值

原理:

最近邻插值图示:

双线性插值图示

读入图像

img = cv.imread('pic/rabbit50x33.jpg')
show(img)

显示

程序实现

img1 = cv.resize(img,(330,500),interpolation=cv.INTER_NEAREST) #最近邻插值
img2 = cv.resize(img,(330,500),interpolation=cv.INTER_LINEAR_EXACT) #精确双线新插值
 
show(np.hstack([img1,img2]))

显示

可以看出最近邻插值还是比较模糊的,过渡结果没有双线性插值平滑

以上就是OpenCV图像处理之七种常用图像几何变换的详细内容,更多关于OpenCV 图像几何变换的资料请关注脚本之家其它相关文章!

相关文章

  • python中什么是面向对象

    python中什么是面向对象

    在本篇文章里小编给大家分享了关于python面向对象的相关基础知识点,有兴趣的朋友们跟着学习下。
    2020-06-06
  • 使用python读取.text文件特定行的数据方法

    使用python读取.text文件特定行的数据方法

    今天小编就为大家分享一篇使用python读取.text文件特定行的数据方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • Python中的Numpy 面向数组编程常见操作

    Python中的Numpy 面向数组编程常见操作

    这篇文章主要介绍了Python中的Numpy 面向数组编程常见操作,使用Numpy数组可以使你利用简单的数组表达式完成多项数据操作任务,而不需要编写大量的循环,这个极大的帮助了我们高效的解决问题
    2022-07-07
  • Python 3.10 中 6 个兴奋的新特性

    Python 3.10 中 6 个兴奋的新特性

    Python 是当今最流行的编程语言之一其流行的原因有很多种,Python 3.10 有几个新的很酷的功能,使得使用 Python 成为一种更好的体验。在本文中,我将与您分享 6 个让我最兴奋的新特性,感兴趣的朋友一起看看吧
    2021-10-10
  • python中使用while循环的实例

    python中使用while循环的实例

    在本篇内容里小编给各位整理的是关于python中使用while循环的实例以及相关知识点,需要的朋友们学习下。
    2019-08-08
  • Python requests和httpx实例详解

    Python requests和httpx实例详解

    这篇文章主要介绍了Python requests和httpx的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧
    2023-12-12
  • Python基于Opencv识别两张相似图片

    Python基于Opencv识别两张相似图片

    这篇文章主要介绍了Python基于Opencv识别两张相似图片的步骤,帮助大家更好的理解和学习使用python,感兴趣的朋友可以了解下
    2021-04-04
  • Python 一句话生成字母表的方法

    Python 一句话生成字母表的方法

    今天小编就为大家分享一篇Python 一句话生成字母表的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • Python依赖管理及打包工具Poetry使用规范

    Python依赖管理及打包工具Poetry使用规范

    这篇文章主要为大家介绍了Python依赖管理及打包工具Poetry的依赖规范,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步
    2021-09-09
  • 如何将Pycharm中Terminal使用Powershell作为终端

    如何将Pycharm中Terminal使用Powershell作为终端

    这篇文章主要介绍了如何将Pycharm中Terminal使用Powershell作为终端问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-05-05

最新评论