Pyspark 线性回归梯度下降交叉验证知识点详解

 更新时间:2021年12月19日 10:05:20   作者:javaroad  
在本篇内容里小编给大家整理的是一篇关于Pyspark 线性回归梯度下降交叉验证的相关知识点及实例,需要的朋友们可以参考下。

我正在尝试在 pyspark 中的 SGD 模型上执行交叉验证,我正在使用pyspark.mllib.regression,ParamGridBuilder和CrossValidator都来自pyspark.ml.tuning库的LinearRegressionWithSGD。

在 Spark 网站上跟踪文件资料之后,我希望运行此方法可以正常工作

资料参考:https://spark.apache.org/docs/2.1.0/ml-tuning.html

lr = LinearRegressionWithSGD()
pipeline=Pipeline(stages=[lr])

paramGrid = ParamGridBuilder()\
    .addGrid(lr.stepSize, Array(0.1, 0.01))\
    .build()

crossval = CrossValidator(estimator=pipeline,estimatorParamMaps= paramGrid,
                         evaluator=RegressionEvaluator(),
                         numFolds=10)

但是LinearRegressionWithSGD()没有属性stepSize(也没有运气尝试过其他人)。

我可以将 lr 设置为LinearRegression,但是我无法在模型中使用 SGD 并进行交叉验证。

斯卡拉中有kFold方法,但我不确定如何从 pyspark 访问该方法

解决方案

您可以使用LinearRegressionWithSGD中的step参数来定义步长,但由于您正在混合不兼容的库,因此这将使代码无法正常工作。不幸的是,我不知道如何使用SGD优化对ml库进行交叉验证,我想知道自己,但是您正在混合使用pyspark.ml和pyspark.mllib库。具体来说,您不能将LinearRegressionWithSGD与pyspark.ml库一起使用。您必须使用pyspark.ml.regression.LinearRegression。

好消息是您可以将pyspark.ml.regression.LinearRegression的setsolver属性设置为使用'gd'。因此,您可能可以将'gd'优化器的参数设置为以SGD运行,但是我不确定求解器文档在哪里或如何设置求解器属性(例如批大小)。该api显示了调用Param()的LinearRegression对象,但是我不确定它是否使用pyspark.mllib优化器。如果有人知道如何设置求解器属性,则可以通过允许您将Pipeline,ParamGridBuilder和CrossValidation ml软件包用于LinearRegression进行模型选择,并利用SGD优化进行参数调整来回答您的问题。

到此这篇关于Pyspark 线性回归梯度下降交叉验证知识点详解的文章就介绍到这了,更多相关Pyspark 线性回归梯度下降交叉验证内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python实现excel转置问题详解

    python实现excel转置问题详解

    这篇文章主要介绍了python实现excel转置问题详解,excel转置分为两种情况,一个是较为简单的只需要行转列,列转行,具体详解,感兴趣的小伙伴可以参考一下
    2022-09-09
  • 详解pandas的外部数据导入与常用方法

    详解pandas的外部数据导入与常用方法

    这篇文章主要介绍了详解pandas的外部数据导入与常用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-05-05
  • 基于python实现弱密码检测工具

    基于python实现弱密码检测工具

    Python中一个强大的加密模块,提供了许多常见的加密算法和工具,本文我们将使用Python编写一个弱密码检测工具,感兴趣的小伙伴可以了解一下
    2024-01-01
  • python实现书法碑帖图片分割

    python实现书法碑帖图片分割

    这篇文章主要为大家详细介绍了python实现书法碑帖图片分割,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-03-03
  • Python入门Anaconda和Pycharm的安装和配置详解

    Python入门Anaconda和Pycharm的安装和配置详解

    这篇文章主要介绍了Python入门Anaconda和Pycharm的安装和配置详解,文章通过图文介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-07-07
  • Python技法-序列拆分详解

    Python技法-序列拆分详解

    Python中的任何序列(可迭代的对象)都可以通过赋值操作进行拆分,包括但不限于元组、列表、字符串、文件、迭代器、生成器等。
    2021-10-10
  • python中@property的作用和getter setter的解释

    python中@property的作用和getter setter的解释

    这篇文章主要介绍了python中@property的作用和getter setter的解释,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-12-12
  • 对python过滤器和lambda函数的用法详解

    对python过滤器和lambda函数的用法详解

    今天小编就为大家分享一篇对python过滤器和lambda函数的用法详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • Python微医挂号网医生数据抓取

    Python微医挂号网医生数据抓取

    今天小编就为大家分享一篇关于Python微医挂号网医生数据抓取,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
    2019-01-01
  • QML用PathView实现轮播图

    QML用PathView实现轮播图

    这篇文章主要为大家详细介绍了QML用PathView实现轮播图,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2020-06-06

最新评论