Python 实现循环最快方式(for、while 等速度对比)

 更新时间:2022年01月05日 08:39:42   作者:Python之禅  
这篇文章主要介绍了Python 利用for、while 实现循环最快方式,文章主要对for、while 等速度对比详细介绍,具有一定的参考价值 ,需要的小伙伴可以参考一下

文章转自微信公众号-Python之禅

众所周知,Python 不是一种执行效率较高的语言。此外在任何语言中,循环都是一种非常消耗时间的操作。假如任意一种简单的单步操作耗费的时间为 1 个单位,将此操作重复执行上万次,最终耗费的时间也将增长上万倍。

while for Python 中常用的两种实现循环的关键字,它们的运行效率实际上是有差距的。

比如下面的测试代码:

import timeit


def while_loop(n=100_000_000):
    i = 0
    s = 0
    while i < n:
        s += i
        i += 1
    return s


def for_loop(n=100_000_000):
    s = 0
    for i in range(n):
        s += i
    return s


def main():
    print('while loop\t\t', timeit.timeit(while_loop, number=1))
    print('for loop\t\t', timeit.timeit(for_loop, number=1))


if __name__ == '__main__':
    main()
# => while loop               4.718853999860585
# => for loop                 3.211570399813354

这是一个简单的求和操作,计算从 1 到 n 之间所有自然数的总和。可以看到 for 循环相比 while 要快 1.5 秒。

其中的差距主要在于两者的机制不同。

在每次循环中,while 实际上比 for 多执行了两步操作:边界检查和变量 i 的自增。即每进行一次循环,while 都会做一次边界检查(while i < n)和自增计算(i +=1)。这两步操作都是显式的纯 Python 代码。

for 循环不需要执行边界检查和自增操作,没有增加显式的 Python 代码(纯 Python 代码效率低于底层的 C 代码)。当循环的次数足够多,就出现了明显的效率差距。

可以再增加两个函数,在 for 循环中加上不必要的边界检查和自增计算:

import timeit


def while_loop(n=100_000_000):
    i = 0
    s = 0
    while i < n:
        s += i
        i += 1
    return s


def for_loop(n=100_000_000):
    s = 0
    for i in range(n):
        s += i
    return s


def for_loop_with_inc(n=100_000_000):
    s = 0
    for i in range(n):
        s += i
        i += 1
    return s


def for_loop_with_test(n=100_000_000):
    s = 0
    for i in range(n):
        if i < n:
            pass
        s += i
    return s


def main():
    print('while loop\t\t', timeit.timeit(while_loop, number=1))
    print('for loop\t\t', timeit.timeit(for_loop, number=1))
    print('for loop with increment\t\t',
          timeit.timeit(for_loop_with_inc, number=1))
    print('for loop with test\t\t', timeit.timeit(for_loop_with_test, number=1))


if __name__ == '__main__':
    main()
# => while loop               4.718853999860585
# => for loop                 3.211570399813354
# => for loop with increment          4.602369500091299
# => for loop with test               4.18337869993411

可以看出,增加的边界检查和自增操作确实大大影响了 for 循环的执行效率。

前面提到过,Python 底层的解释器和内置函数是用 C 语言实现的。而 C 语言的执行效率远大于 Python

对于上面的求等差数列之和的操作,借助于 Python 内置的 sum 函数,可以获得远大于 for 或 while 循环的执行效率。

import timeit


def while_loop(n=100_000_000):
    i = 0
    s = 0
    while i < n:
        s += i
        i += 1
    return s


def for_loop(n=100_000_000):
    s = 0
    for i in range(n):
        s += i
    return s


def sum_range(n=100_000_000):
    return sum(range(n))


def main():
    print('while loop\t\t', timeit.timeit(while_loop, number=1))
    print('for loop\t\t', timeit.timeit(for_loop, number=1))
    print('sum range\t\t', timeit.timeit(sum_range, number=1))


if __name__ == '__main__':
    main()
# => while loop               4.718853999860585
# => for loop                 3.211570399813354
# => sum range                0.8658821999561042

可以看到,使用内置函数 sum 替代循环之后,代码的执行效率实现了成倍的增长。

内置函数 sum 的累加操作实际上也是一种循环,但它由 C 语言实现,而 for 循环中的求和操作是由纯 Python 代码 s += i 实现的。C > Python

再拓展一下思维。小时候都听说过童年高斯巧妙地计算 1 到 100 之和的故事。1…100 之和等于 (1 + 100) * 50。这个计算方法同样可以应用到上面的求和操作中。

import timeit


def while_loop(n=100_000_000):
    i = 0
    s = 0
    while i < n:
        s += i
        i += 1
    return s


def for_loop(n=100_000_000):
    s = 0
    for i in range(n):
        s += i
    return s


def sum_range(n=100_000_000):
    return sum(range(n))


def math_sum(n=100_000_000):
    return (n * (n - 1)) // 2


def main():
    print('while loop\t\t', timeit.timeit(while_loop, number=1))
    print('for loop\t\t', timeit.timeit(for_loop, number=1))
    print('sum range\t\t', timeit.timeit(sum_range, number=1))
    print('math sum\t\t', timeit.timeit(math_sum, number=1))


if __name__ == '__main__':
    main()
# => while loop               4.718853999860585
# => for loop                 3.211570399813354
# => sum range                0.8658821999561042
# => math sum                 2.400018274784088e-06

最终math sum 的执行时间约为 2.4e-6,缩短了上百万倍。这里的思路就是,既然循环的效率低,一段代码要重复执行上亿次。

索性直接不要循环,通过数学公式,把上亿次的循环操作变成只有一步操作。效率自然得到了空前的加强。

最后的结论:

实现循环的最快方式—— —— ——就是不用循环

对于 Python 而言,则尽可能地使用内置函数,将循环中的纯 Python 代码降到最低。

当然,内置函数在某些情况下还不是最快的。比如在创建列表的时候,是字面量写法的速度更快

到此这篇关于Python 实现循环最快方式(for、while 等速度对比)的文章就介绍到这了,更多相关Python 实现循环最快方式内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

参考资料:

The Fastest Way to Loop in Python - mCoding  (https://youtu.be/Qgevy75co8c)

相关文章

  • python定时任务sched库用法简单实例

    python定时任务sched库用法简单实例

    sched可用于定时任务,唯一需要注意的就是,这些任务在一个线程中运行,如果前面的任务耗时过长,则后面的任务将顺延执行,下面这篇文章主要给大家介绍了关于python定时任务sched库用法的相关资料,需要的朋友可以参考下
    2023-01-01
  • Python分布式进程中你会遇到的问题解析

    Python分布式进程中你会遇到的问题解析

    这篇文章主要介绍了Python分布式进程中你会遇到的问题,本文通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-05-05
  • 卸载所有通过pip安装的Python包的方法总结(Windows系统)

    卸载所有通过pip安装的Python包的方法总结(Windows系统)

    这篇文章主要介绍了卸载所有通过pip安装的Python包的方法总结(Windows系统),文中通过代码示例和图文讲解的非常详细,并具有一定的参考价值,需要的朋友可以参考下
    2024-08-08
  • 用python实现超强的加密软件

    用python实现超强的加密软件

    大家好,本篇文章主要讲的是用python实现超强的加密软件,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下,方便下次浏览
    2022-01-01
  • OpenCV-Python实现轮廓检测实例分析

    OpenCV-Python实现轮廓检测实例分析

    这篇文章主要介绍了OpenCV-Python实现轮廓检测实例分析,具有一定借鉴价值,需要的朋友可以参考下
    2018-01-01
  • Python函数式编程中itertools模块详解

    Python函数式编程中itertools模块详解

    这篇文章主要介绍了在Python中使用itertools模块中的组合函数的教程,来自IBM官方技术文档,需要的朋友可以参考下,希望能够给你带来帮助
    2021-09-09
  • 使用python查找替换PowerPoint演示文稿中的文本

    使用python查找替换PowerPoint演示文稿中的文本

    演示文稿已成为商务会议、学术报告和教育培训中不可或缺的一部分,而PowerPoint演示文稿作为行业标准工具,更是承载着无数创意与信息的载体,本文将介绍如何使用Python来精确查找并替换PowerPoint演示文稿中的文本,需要的朋友可以参考下
    2024-07-07
  • Python小游戏之300行代码实现俄罗斯方块

    Python小游戏之300行代码实现俄罗斯方块

    这篇文章主要给大家介绍了关于Python小游戏之300行代码实现俄罗斯方块的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面来一起看看吧
    2019-01-01
  • Python的几个高级语法概念浅析(lambda表达式闭包装饰器)

    Python的几个高级语法概念浅析(lambda表达式闭包装饰器)

    本文主要记录自己对几个高级语法概念的理解:匿名函数、lambda表达式、闭包、装饰器。这几个概念并非Python特有,但本文只限于用Python做说明
    2016-05-05
  • Nginx+Uwsgi+Django 项目部署到服务器的思路详解

    Nginx+Uwsgi+Django 项目部署到服务器的思路详解

    这篇文章主要介绍了Nginx+Uwsgi+Django 项目部署到服务器的思路,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-05-05

最新评论