python将天气预报可视化

 更新时间:2022年01月05日 09:05:21   作者:远方的星  
大家好,本篇文章主要讲的是python将天气预报可视化,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下,方便下次浏览

前言

在想题材之际,打开私信,有许多萌新&小伙伴询问我之前写的一篇《python爬取天气预报数据,并实现数据可视化》中的bug怎么解决,虽然我在之前,就在评论区提供了自己的解决思路,但可能不够清楚,于是写这篇文章,来解决bug,并对程序进行优化。

结果展示

其中:

红线代表当天最高气温,蓝线代表最低气温,最高气温点上的标注为当天的天气情况。

如果使夜晚运行程序,则最高气温和最低气温的点会重合,使由爬取数据产生误差导致的。

在这里插入图片描述

程序代码

详细请看注释

# -*- coding: UTF-8 -*-
"""
# @Time: 2022/1/4 11:02
# @Author: 远方的星
# @CSDN: https://blog.csdn.net/qq_44921056
"""
import chardet
import requests
from lxml import etree
from fake_useragent import UserAgent
import pandas as pd
from matplotlib import pyplot as plt


# 随机产生请求头
ua = UserAgent(verify_ssl=False, path='D:/Pycharm/fake_useragent.json')


# 随机切换请求头
def random_ua():
    headers = {
        "user-agent": ua.random
    }
    return headers


# 解析页面
def res_text(url):
    res = requests.get(url=url, headers=random_ua())
    res.encoding = chardet.detect(res.content)['encoding']
    response = res.text
    html = etree.HTML(response)
    return html


# 获得未来七天及八到十五天的页面链接
def get_url(url):
    html = res_text(url)
    url_7 = 'http://www.weather.com.cn/' + html.xpath('//*[@id="someDayNav"]/li[2]/a/@href')[0]
    url_8_15 = 'http://www.weather.com.cn/' + html.xpath('//*[@id="someDayNav"]/li[3]/a/@href')[0]
    # print(url_7)
    # print(url_8_15)
    return url_7, url_8_15


# 获取未来七天的天气情况
def get_data_7(url):
    html = res_text(url)
    list_s = html.xpath('//*[@id="7d"]/ul/li')  # 获取天气数据列表
    Date, Weather, Low, High = [], [], [], []
    for i in range(len(list_s)):
        list_date = list_s[i].xpath('./h1/text()')[0]  # 获取日期,如:4日(明天)
        # print(list_data)
        list_weather = list_s[i].xpath('./p[1]/@title')[0]  # 获取天气情况,如:小雨转雨夹雪
        # print(list_weather)
        tem_low = list_s[i].xpath('./p[2]/i/text()')  # 获取最低气温
        tem_high = list_s[i].xpath('./p[2]/span/text()')  # 获取最高气温
        if tem_high == []:  # 遇到夜晚情况,筛掉当天的最高气温
            tem_high = tem_low  # 无最高气温时,使最高气温等于最低气温
        tem_low = int(tem_low[0].replace('℃', '')) # 将气温数据处理
        tem_high = int(tem_high[0].replace('℃', ''))
        # print(type(tem_high))
        Date.append(list_date), Weather.append(list_weather), Low.append(tem_low), High.append(tem_high)
    excel = pd.DataFrame()  # 定义一个二维列表
    excel['日期'] = Date
    excel['天气'] = Weather
    excel['最低气温'] = Low
    excel['最高气温'] = High
    # print(excel)
    return excel


def get_data_8_15(url):
    html = res_text(url)
    list_s = html.xpath('//*[@id="15d"]/ul/li')
    Date, Weather, Low, High = [], [], [], []
    for i in range(len(list_s)):
        # data_s[0]是日期,如:周二(11日),data_s[1]是天气情况,如:阴转晴,data_s[2]是最低温度,如:/-3℃
        data_s = list_s[i].xpath('./span/text()')
        # print(data_s)
        date = modify_str(data_s[0])  # 获取日期情况
        weather = data_s[1]
        low = int(data_s[2].replace('/', '').replace('℃', ''))
        high = int(list_s[i].xpath('./span/em/text()')[0].replace('℃', ''))
        # print(date, weather, low, high)
        Date.append(date), Weather.append(weather), Low.append(low), High.append(high)
    # print(Date, Weather, Low, High)
    excel = pd.DataFrame()  # 定义一个二维列表
    excel['日期'] = Date
    excel['天气'] = Weather
    excel['最低气温'] = Low
    excel['最高气温'] = High
    # print(excel)
    return excel


# 将8-15天日期格式改成与未来7天一致
def modify_str(date):
    date_1 = date.split('(')
    date_2 = date_1[1].replace(')', '')
    date_result = date_2 + '(' + date_1[0] + ')'
    return date_result


# 实现数据可视化
def get_image(date, weather, high, low):
    # 用来正常显示中文标签
    plt.rcParams['font.sans-serif'] = ['SimHei']
    # 用来正常显示负号
    plt.rcParams['axes.unicode_minus'] = False
    # 根据数据绘制图形
    fig = plt.figure(dpi=128, figsize=(10, 6))
    ax = fig.add_subplot(111)
    plt.plot(date, high, c='red', alpha=0.5, marker='*')
    plt.plot(date, low, c='blue', alpha=0.5, marker='o')
    # 给图表中两条折线中间的部分上色
    plt.fill_between(date, high, low, facecolor='blue', alpha=0.2)
    # 设置图表格式
    plt.title('邳州近15天天气预报', fontsize=24)
    plt.xlabel('日期', fontsize=12)
    # 绘制斜的标签,以免重叠
    fig.autofmt_xdate()
    plt.ylabel('气温', fontsize=12)
    # 参数刻度线设置
    plt.tick_params(axis='both', which='major', labelsize=10)
    # 修改刻度
    plt.xticks(date[::1])
    # 对点进行标注,在最高气温点处标注当天的天气情况
    for i in range(15):
        ax.annotate(weather[i], xy=(date[i], high[i]))
    # 显示图片
    plt.show()


def main():
    base_url = 'http://www.weather.com.cn/weather1d/101190805.shtml'
    url_7, url_8_15 = get_url(base_url)
    data_1 = get_data_7(url_7)
    data_2 = get_data_8_15(url_8_15)
    data = pd.concat([data_1, data_2], axis=0, ignore_index=True)  # ignore_index=True实现两张表拼接,不保留原索引
    get_image(data['日期'], data['天气'], data['最高气温'], data['最低气温'])


if __name__ == '__main__':
    main()

期望

这是以一个城市为例的可视化,下次争取做到根据输入的城市进行天气预报可视化

到此这篇关于python将天气预报可视化的文章就介绍到这了,更多相关python天气预报内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python基于Opencv来快速实现人脸识别过程详解(完整版)

    Python基于Opencv来快速实现人脸识别过程详解(完整版)

    这篇文章主要介绍了Python基于Opencv来快速实现人脸识别过程详解(完整版)随着人工智能的日益火热,计算机视觉领域发展迅速,今天就为大家带来最基础的人脸识别基础,从一个个函数开始走进这个奥妙的世界,需要的朋友可以参考下
    2019-07-07
  • Python 如何给图像分类(图像识别模型构建)

    Python 如何给图像分类(图像识别模型构建)

    这篇文章主要介绍了Python 教你如何给图像分类,今天的文章主要是讲图像识别模型如何构建,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-06-06
  • Python数据挖掘中常用的五种AutoEDA 工具总结

    Python数据挖掘中常用的五种AutoEDA 工具总结

    大家好,我们都知道在数据挖掘的过程中,数据探索性分析一直是非常耗时的一个环节,但也是绕不开的一个环节,本篇文章带你盘点数据挖掘中常见的5种 AutoEDA 工具
    2021-11-11
  • OpenCV实现直线检测

    OpenCV实现直线检测

    这篇文章主要为大家详细介绍了OpenCV实现直线检测,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-08-08
  • Python实现统计图像连通域的示例详解

    Python实现统计图像连通域的示例详解

    这篇文章主要为大家详细介绍了如何利用Python实现统计图像连通域的功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起了解一下
    2023-04-04
  • 从基础到进阶带你玩转Python中的异常处理

    从基础到进阶带你玩转Python中的异常处理

    在编程过程中,我们经常会遇到各种运行时错误,比如除零错误、文件未找到错误等,本文将介绍Python异常处理的基础知识,希望对大家有所帮助
    2025-01-01
  • python进程管理工具supervisor使用实例

    python进程管理工具supervisor使用实例

    这篇文章主要介绍了python进程管理工具supervisor使用实例,本文介绍了supervisor的安装、配置、使用等内容,需要的朋友可以参考下
    2014-09-09
  • Python实现根据Excel生成Model和数据导入脚本

    Python实现根据Excel生成Model和数据导入脚本

    最近遇到一个需求,有几十个Excel,每个的字段都不一样,然后都差不多是第一行是表头,后面几千上万的数据,需要把这些Excel中的数据全都加入某个已经上线的Django项目。所以我造了个自动生成 Model和导入脚本的轮子,希望对大家有所帮助
    2022-11-11
  • Django模型序列化返回自然主键值示例代码

    Django模型序列化返回自然主键值示例代码

    这篇文章主要给大家介绍了关于Django模型序列化返回自然主键值的相关资料,文中通过示例代码介绍的非常详细,对大家学习或者使用Django具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
    2019-06-06
  • 使用Python删除PPT中所有超链接的操作步骤

    使用Python删除PPT中所有超链接的操作步骤

    在某些PPT使用场景中,比如需要打印幻灯片或者超链接已失效时,演示文稿中的超链接可能会成为一种干扰,这时我们需要移除PowerPoint演示文稿中的超链接,本文将介绍如何使用Python删除PowerPoint演示文稿中的所有超链接,需要的朋友可以参考下
    2024-08-08

最新评论