提升 Python 代码运行速度的6个技巧
其实,Python 比我们想象的运行的要快。我们之所以有先入为主的认为Python运行慢,可能是我们平常的误用和缺乏使用技巧知识。
接下来让我们看看如何用一些简单的Trick来提高我们程序的运行性能
1、使用内置函数
Python
中的许多内置函数都是用C实现的,并且经过了很好的优化。因此,如果熟悉这些内置函数,就可以提高Python代码的性能。一些常用的内置函数有sum()
、len()
、map()
、max()
等。
假设我们有一个包含单词的列表,我们希望每个单词的首字母均变为大写。此时使用map()
函数是不错的选择。
一般版本:
new_list = [] word_list = ["i", "am", "a", "python", "programmer"] for word in word_list: new_list.append(word.capitalize())
改进版本:
word_list = ["i", "am", "a", "python", "programmer"] new_list = list(map(str.capitalize, word_list))
时间对比:
import time new_list = [] word_list = ["i", "am", "a", "python", "programmer"] start = time.time() for word in word_list: new_list.append(word.capitalize()) print(time.time() - start, "seconds") start = time.time() new_list = list(map(str.capitalize, word_list)) print(time.time() - start, "seconds")
运行结果:
1.0013580322265625e-05 seconds
4.76837158203125e-06 seconds
可以看出第二种方法运行速度快了将近2倍.
2、字符串连接 VS join()
在Python
中,字符串是不可变的,因此我们不能修改它们。
每次当我们连接多个字符串时,我们将会创建一个新的字符串,此时会导致一些运行性能问题。
一般版本:
new_list = [] word_list = ["I", "am", "a", "Python", "programmer"] for word in word_list: new_list += word
改进版本:
word_list = ["I", "am", "a", "Python", "programmer"] new_list = "".join(word_list)
时间对比:
import time new_list = [] word_list = ["I", "am", "a", "Python", "programmer"] start = time.time() for word in word_list: new_list += word print(time.time() - start, "seconds") start = time.time() new_list = "".join(word_list) print(time.time() - start, "seconds")
运行结果:
4.0531158447265625e-06 seconds
9.5367431640625e-07 seconds
使用Join()
函数可以让代码运行快4倍.
3、创建列表和字典的方式
一般来说,使用[]和{}来创建列表和字典相比使用list()
和dict{}
运行更加高效.这是因为使用list()
和dict{}
来创建对象时需要调用一个附加函数.
一般版本:
list() dict()
改进版本:
() {}
时间对比:
为了便于对比时间,这里我们使用timeit
函数来统计,我们运行1百万次,来看二者的时间对比,代码如下:
import timeit slower_list = timeit.timeit("list()", number=10**6) slower_dict = timeit.timeit("dict()", number=10**6) faster_list = timeit.timeit("[]", number=10**6) faster_dict = timeit.timeit("{}", number=10**6) print(slower_list, "seconds") print(slower_dict, "seconds") print(faster_list, "seconds") print(faster_dict, "seconds")
运行结果:
0.08825178800000001 seconds
0.083323732 seconds
0.019935448999999994 seconds
0.027835573000000002 seconds
可以看出,我们的运行速度快了将近4倍.
4、使用 f-Strings
我们已经知道将字符串进行串联可能会使程序变慢。
另一个比较好的解决方案是使用f-Strings
。
一般版本:
me = "Python" string = "Make " + me + " faster"
改进版本:
me = "Python" string = f"Make {me} faster"
时间对比:
import time me = "Python" start = time.time() string = "Make " + me + " faster" print(time.time() - start, "seconds") start = time.time() string = f"Make {me} faster" print(time.time() - start, "seconds")
运行结果:
2.1457672119140625e-06 seconds
9.5367431640625e-07 seconds
可以看出,我们的运行速度快了将近2倍.
5、使用Comprehensions
Python中的List Comprehensions
为我们提供了更短的语法,甚至只有一行代码来实现各种强大的功能。很多用到循环的场景下,我们尽量使用生成式的语法来实现.
一般版本:
new_list = [] existing_list = range(1000000) for i in existing_list: if i % 2 == 1: new_list.append(i)
较快版本:
existing_list = range(1000000) new_list = [i for i in existing_list if i % 2 == 1]
时间对比:
import time new_list = [] existing_list = range(1000000) start = time.time() for i in existing_list: if i % 2 == 1: new_list.append(i) print(time.time() - start, "seconds") start = time.time() new_list = [i for i in existing_list if i % 2 == 1] print(time.time() - start, "seconds")
运行结果:
0.16418218612670898 seconds
0.07834219932556152 seconds
可以看出,我们的运行速度快了将近2倍.
6、附录- Python中的内置函数
我们可以通过官网来查看Python
的内置函数.
如果我们只关注上述例子中一些短小的代码片段,这些技巧似乎没有太大的改善。 实际上,我们的项目很容易变得复杂,此时上述技巧就派上用场啦!
7. 总结
本文重点介绍了在Python
中如何使用一些简单的Trick来提升代码运行效率,并给出了相应的代码示例。
相关文章
Flask SQLAlchemy一对一,一对多的使用方法实践
Flask-SQLAlchemy一对一,一对多的使用方法实践,需要的朋友可以参考下2013-02-02pycharm运行程序时出现Run‘python tests for XXX.py‘问题及
这篇文章主要介绍了pycharm运行程序时出现Run ‘python tests for XXX.py‘问题及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教2023-08-08使用Python的数据可视化库Matplotlib实现折线图
数据可视化是数据分析和探索中不可或缺的一环,本文将介绍如何使用Python中的数据可视化库Matplotlib,通过示例代码实现一个简单的折线图,感兴趣的同学可以参考阅读下2023-07-07python3.7安装matplotlib失败问题的完美解决方法
由于学习需要安装matplotlib库,阅读网上教程后一直出现各种各样的错误,下面这篇文章主要给大家介绍了关于python3.7安装matplotlib失败问题的完美解决方法,需要的朋友可以参考下2022-07-07
最新评论