提升 Python 代码运行速度的6个技巧

 更新时间:2022年01月26日 09:48:26   作者:Python学习与数据挖掘  
本文分享了提升 Python 代码运行速度的6个技巧,Python 比我们想象的运行的要快。我们之所以有先入为主的认为Python运行慢,可能是我们平常的误用和缺乏使用技巧知识。接下来让我们看看如何用一些简单的Trick来提高我们程序的运行性能,需要的朋友可以参考一下

其实,Python 比我们想象的运行的要快。我们之所以有先入为主的认为Python运行慢,可能是我们平常的误用和缺乏使用技巧知识。

接下来让我们看看如何用一些简单的Trick来提高我们程序的运行性能

1、使用内置函数

Python中的许多内置函数都是用C实现的,并且经过了很好的优化。因此,如果熟悉这些内置函数,就可以提高Python代码的性能。一些常用的内置函数有sum()len()map()max()等。

假设我们有一个包含单词的列表,我们希望每个单词的首字母均变为大写。此时使用map()函数是不错的选择。

一般版本:

new_list = []
word_list = ["i", "am", "a", "python", "programmer"]
for word in word_list:
    new_list.append(word.capitalize())

改进版本:

word_list = ["i", "am", "a", "python", "programmer"]
new_list = list(map(str.capitalize, word_list))

时间对比:

import time
new_list = []
word_list = ["i", "am", "a", "python", "programmer"]

start = time.time()

for word in word_list:
    new_list.append(word.capitalize())
print(time.time() - start, "seconds")

start = time.time()

new_list = list(map(str.capitalize, word_list))
print(time.time() - start, "seconds")

运行结果:

1.0013580322265625e-05 seconds
4.76837158203125e-06 seconds

可以看出第二种方法运行速度快了将近2倍.

2、字符串连接 VS join()

Python中,字符串是不可变的,因此我们不能修改它们。
每次当我们连接多个字符串时,我们将会创建一个新的字符串,此时会导致一些运行性能问题。

一般版本:

new_list = []
word_list = ["I", "am", "a", "Python", "programmer"]
for word in word_list:
    new_list += word

改进版本:

word_list = ["I", "am", "a", "Python", "programmer"]
new_list = "".join(word_list)

时间对比:

import time

new_list = []
word_list = ["I", "am", "a", "Python", "programmer"]

start = time.time()
for word in word_list:
    new_list += word
print(time.time() - start, "seconds")

start = time.time()
new_list = "".join(word_list)
print(time.time() - start, "seconds")

运行结果:

4.0531158447265625e-06 seconds
9.5367431640625e-07 seconds

使用Join()函数可以让代码运行快4倍.

3、创建列表和字典的方式

一般来说,使用[]和{}来创建列表和字典相比使用list()dict{}运行更加高效.这是因为使用list()dict{}来创建对象时需要调用一个附加函数.

一般版本:

list()
dict()

改进版本:

()
{}

时间对比:

为了便于对比时间,这里我们使用timeit函数来统计,我们运行1百万次,来看二者的时间对比,代码如下:

import timeit

slower_list = timeit.timeit("list()", number=10**6)
slower_dict = timeit.timeit("dict()", number=10**6)

faster_list = timeit.timeit("[]", number=10**6)
faster_dict = timeit.timeit("{}", number=10**6)

print(slower_list, "seconds")
print(slower_dict, "seconds")
print(faster_list, "seconds")
print(faster_dict, "seconds")

运行结果:

0.08825178800000001 seconds
0.083323732 seconds
0.019935448999999994 seconds
0.027835573000000002 seconds

可以看出,我们的运行速度快了将近4倍.

4、使用 f-Strings

我们已经知道将字符串进行串联可能会使程序变慢。
另一个比较好的解决方案是使用f-Strings

一般版本:

me = "Python"
string = "Make " + me + " faster"

改进版本:

me = "Python"
string = f"Make {me} faster"

时间对比:

import time
me = "Python"

start = time.time()
string = "Make " + me + " faster"
print(time.time() - start, "seconds")

start = time.time()
string = f"Make {me} faster"
print(time.time() - start, "seconds")

运行结果:

2.1457672119140625e-06 seconds
9.5367431640625e-07 seconds

可以看出,我们的运行速度快了将近2倍.

5、使用Comprehensions

Python中的List Comprehensions为我们提供了更短的语法,甚至只有一行代码来实现各种强大的功能。很多用到循环的场景下,我们尽量使用生成式的语法来实现.

一般版本:

new_list = []
existing_list = range(1000000)
for i in existing_list:
    if i % 2 == 1:
        new_list.append(i)

较快版本:

existing_list = range(1000000)
new_list = [i for i in existing_list if i % 2 == 1]

时间对比:

import time

new_list = []
existing_list = range(1000000)

start = time.time()
for i in existing_list:
    if i % 2 == 1:
        new_list.append(i)
print(time.time() - start, "seconds")

start = time.time()
new_list = [i for i in existing_list if i % 2 == 1]
print(time.time() - start, "seconds")

运行结果:

0.16418218612670898 seconds
0.07834219932556152 seconds

可以看出,我们的运行速度快了将近2倍.

6、附录- Python中的内置函数

我们可以通过官网来查看Python的内置函数.

如果我们只关注上述例子中一些短小的代码片段,这些技巧似乎没有太大的改善。 实际上,我们的项目很容易变得复杂,此时上述技巧就派上用场啦!

7. 总结

本文重点介绍了在Python中如何使用一些简单的Trick来提升代码运行效率,并给出了相应的代码示例。

相关文章

  • python中的对数log函数表示及用法

    python中的对数log函数表示及用法

    在本篇文章里小编给大家整理了一篇关于python中的对数log函数表示及用法,有需要的朋友们可以学习下。
    2020-12-12
  • Flask SQLAlchemy一对一,一对多的使用方法实践

    Flask SQLAlchemy一对一,一对多的使用方法实践

    Flask-SQLAlchemy一对一,一对多的使用方法实践,需要的朋友可以参考下
    2013-02-02
  • 解析Sentry Relay 二次开发调试

    解析Sentry Relay 二次开发调试

    这篇文章主要介绍了Sentry Relay 二次开发调试简介,集成测试要求 Redis 和 Kafka 在其默认配置中运行,获取所有必需服务的最便捷方式是通过 sentry devservices,这需要最新的 Sentry 开发环境,本文给大家介绍的非常详细,需要的朋友参考下吧
    2022-03-03
  • pycharm运行程序时出现Run‘python tests for XXX.py‘问题及解决

    pycharm运行程序时出现Run‘python tests for XXX.py‘问题及

    这篇文章主要介绍了pycharm运行程序时出现Run ‘python tests for XXX.py‘问题及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-08-08
  • Python中Async语法协程的实现

    Python中Async语法协程的实现

    这篇文章主要介绍了Python中Async语法协程的实现,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-06-06
  • Python使用sigthief签发证书的实现步骤

    Python使用sigthief签发证书的实现步骤

    Windows 系统中的一些非常重要文件通常会被添加数字签名,其目的是用来防止被篡改,能确保用户通过互联网下载时能确信此代码没有被非法篡改和来源可信,从而保护了代码的完整性、保护了用户不会被病毒、恶意代码和间谍软件所侵害,本章将演示证书的签发与伪造
    2021-06-06
  • 使用Python的数据可视化库Matplotlib实现折线图

    使用Python的数据可视化库Matplotlib实现折线图

    数据可视化是数据分析和探索中不可或缺的一环,本文将介绍如何使用Python中的数据可视化库Matplotlib,通过示例代码实现一个简单的折线图,感兴趣的同学可以参考阅读下
    2023-07-07
  • python3.7安装matplotlib失败问题的完美解决方法

    python3.7安装matplotlib失败问题的完美解决方法

    由于学习需要安装matplotlib库,阅读网上教程后一直出现各种各样的错误,下面这篇文章主要给大家介绍了关于python3.7安装matplotlib失败问题的完美解决方法,需要的朋友可以参考下
    2022-07-07
  • python实现web应用框架之增加动态路由

    python实现web应用框架之增加动态路由

    这篇文章主要介绍web应用框架如何添加动态路由,在我们编写的框架中,我们添加动态路由,是使用了正则表达式,同时在注册的时候,需要注明该路由是请求路由,文中有详细的代码示例,需要的朋友可以参考下
    2023-05-05
  • django 中QuerySet特性功能详解

    django 中QuerySet特性功能详解

    这篇文章主要介绍了django 中QuerySet特性功能详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-07-07

最新评论