一篇文章带你学习Python3的高级特性(2)

 更新时间:2022年01月25日 17:23:34   作者:FUXI_Willard  
这篇文章主要为大家详细介绍了Python3的高阶函数,主要介绍什么是高级特性,高级特性的用法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

1.生成器

# 一边循环一边计算的机制,称为生成器:generator;
# 创建generator方法:
# 1.把一个列表生成式的[]改成()
numsList = [num * num for num in range(10)]
print("列表生成式生成numsList:",numsList)
numsGenerator = (num * num for num in range(10))
print("生成器生成numsGenerator:",numsGenerator)
# 使用next()函数获得generator的下一个返回值
print("打印numsGenerator第一个元素:",next(numsGenerator))
print("打印numsGenerator第二个元素:",next(numsGenerator))
print("--------------------------------------------------------")
# 使用for循环打印generator元素
print("使用循环打印生成器中的元素!")
for num in numsGenerator:
    print(num,end = " ")
print("\n")
print("--------------------------------------------------------")
# 斐波拉契数列(Fibonacci):除第一个和第二个数外,任意一个数均可由前两个数相加得到
# 1,1,2,3,5,8,13,21,34
def fibonacci(num):
    n, a, b = 0, 0, 1
    while n < num:
        print(b,end = "  ")
        a, b = b, a + b
        n = n + 1
    return "Done"

print("Fibonacci前10项为:")
fibonacci(10)
print("\n")
print("--------------------------------------------------------")
# 2.把fibonacci()函数变成generator函数
def fibonacci(num):
    n, a, b = 0, 0, 1
    while n < num:
        yield b
        a, b = b, a + b
        n = n + 1
    return "Done"

# Tips:
# 1.如果一个函数定义中包含yield关键字,则这个函数是一个generator函数;
# 2.调用一个generator函数将返回一个generator;
fib = fibonacci(10)
print("fib的值:",fib)

# 结果输出:
列表生成式生成numsList: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
生成器生成numsGenerator: <generator object <genexpr> at 0x0000028F0E6ACB88>
打印numsGenerator第一个元素: 0
打印numsGenerator第二个元素: 1
--------------------------------------------------------
使用循环打印生成器中的元素!
4 9 16 25 36 49 64 81 

--------------------------------------------------------
Fibonacci前10项为:
1  1  2  3  5  8  13  21  34  55  

--------------------------------------------------------
fib的值: <generator object fibonacci at 0x0000028F0E7839A8>
 

# 普通函数和generator函数的执行流程:
# 1.普通函数:顺序执行,遇到return语句或最后一行函数语句就返回;
# 2.generator函数:在每次调用next()的时候执行,遇到yield语句返回;
# 3.再次执行时从上次返回的yield语句处继续执行;
# 实例:定义一个generator函数,依次返回"Willard",18,"Engineer"
def willardInfo():
    print("STEP1")
    yield "Willard"
    print("--------")
    print("STEP2")
    yield 18
    print("--------")
    print("STEP3")
    yield "Engineer"

# 调用willardInfo()这个generator函数,先生成一个generator对象
# 然后用next()函数不断获得下一个返回值,即可用循环直接打印
willardInfoObject = willardInfo()
for willard in willardInfoObject:
    print(willard)

# 结果输出:
STEP1
Willard
--------
STEP2
18
--------
STEP3
Engineer
 

2.迭代器

# 可直接用于for循环的数据类型:
# 1.list、tuple、dict、set、str等;
# 2.generator,包括:生成器和带yield的generator function;
# 3.可以直接作用于for循环的对象称为可迭代对象:Iterable;
# 4.使用isinstance()判断一个对象是否为Iterable对象;
from collections.abc import Iterable
print("判断list是否为可迭代对象!",isinstance([],Iterable))
print("判断dict是否为可迭代对象!",isinstance({},Iterable))
print("判断str是否为可迭代对象!",isinstance("Willard",Iterable))
print("判断生成式是否为可迭代对象!",isinstance((num for num in range(10)),Iterable))
print("判断number是否为可迭代对象!",isinstance(99,Iterable))

# 结果输出:
判断list是否为可迭代对象! True
判断dict是否为可迭代对象! True
判断str是否为可迭代对象! True
判断生成式是否为可迭代对象! True
判断number是否为可迭代对象! False
 

# 可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator
# 使用isinstance()判断一个对象是否为Iterator对象;
from collections.abc import Iterator
print("判断生成器是否为迭代器!",isinstance((num for num in range(10)),Iterator))
print("判断list是否为迭代器!",isinstance([],Iterator))
print("判断dict是否为迭代器!",isinstance({},Iterator))
print("判断str是否为迭代器!",isinstance("Willard",Iterator))
print("----------------------------------------------------------")
# Tips:
# 1.生成器都是Iterator对象,但list、dict、str是Iterable但不是Iterator;
# 2.Iterator对象表示数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,
# 直到没有数据时抛出StopIteration错误;这个数据流可以看作一个有序序列,
# 但不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,
# Iterator的计算是惰性的,只有在需要返回下一个数据时才计算;
# 3.使用iter()函数把list、dict、str变成Iterator;
print("使用iter()函数把list、dict、str变成Iterator.")
print("判断list是否为迭代器!",isinstance(iter([]),Iterator))
print("判断dict是否为迭代器!",isinstance(iter({}),Iterator))
print("判断str是否为迭代器!",isinstance(iter("Willard"),Iterator))

# 结果输出:
判断生成器是否为迭代器! True
判断list是否为迭代器! False
判断dict是否为迭代器! False
判断str是否为迭代器! False
----------------------------------------------------------
使用iter()函数把list、dict、str变成Iterator.
判断list是否为迭代器! True
判断dict是否为迭代器! True
判断str是否为迭代器! True
 

总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注脚本之家的更多内容! 

相关文章

  • Flask 数据库迁移详情

    Flask 数据库迁移详情

    本文给大家分享的是 Flask 数据库迁移详情,db.create_all()不会重新创建表或是更新表,需要先使用db.drop_all()删除数据库中所有的表之后再调用db.create_all()才能重新创建表,但是这样的话,原来表中的数据就都被删除了,这肯定是不行的,这时就出现了数据库迁移的概念
    2021-11-11
  • Python中的exec、eval使用实例

    Python中的exec、eval使用实例

    这篇文章主要介绍了Python中的exec、eval使用实例,本文以简洁的方式总结了Python中的exec、eval作用,并给出实例,需要的朋友可以参考下
    2014-09-09
  • Python查找多个字典公共键key的方法

    Python查找多个字典公共键key的方法

    这篇文章主要介绍了Python查找多个字典公共键key案例,文章主要通过案例分享展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-04-04
  • Python的函数使用介绍

    Python的函数使用介绍

    这篇文章主要介绍了Python的函数使用,在两种python循环语句的使用中,不仅仅是循环条件达到才能跳出循环体。所以,在对python函数进行阐述之前,先对跳出循环的简单语句块进行介绍,需要的朋友可以参考一下
    2021-12-12
  • python常用模块(math itertools functools sys shutil)使用讲解

    python常用模块(math itertools functools sys 

    这篇文章主要介绍了python常用模块之math itertools functools sys shutil的使用示例讲解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-06-06
  • python如何统计代码运行的时长

    python如何统计代码运行的时长

    这篇文章主要介绍了python如何统计代码运行的时长,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-07-07
  • python jupyter入门教程

    python jupyter入门教程

    Jupyter Notebook是一个开源的Web应用程序,允许用户创建和共享包含代码、方程式、可视化和文本的文档,今天通过本文给大家分享python jupyter入门教程,需要的朋友一起看看吧
    2021-08-08
  • Python单例模式实例详解

    Python单例模式实例详解

    这篇文章主要介绍了Python单例模式,结合实例形式分析了单例模式的概念、实现与使用方法、已经相关注意事项,需要的朋友可以参考下
    2017-03-03
  • 解读Python中字典的key都可以是什么

    解读Python中字典的key都可以是什么

    这篇文章主要介绍了解读Python中字典的key都可以是什么,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-09-09
  • 解决Pyinstaller 打包exe文件 取消dos窗口(黑框框)的问题

    解决Pyinstaller 打包exe文件 取消dos窗口(黑框框)的问题

    今天小编就为大家分享一篇解决Pyinstaller 打包exe文件 取消dos窗口(黑框框)的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-06-06

最新评论