pytorch自定义loss损失函数

 更新时间:2022年02月11日 11:20:32   作者:呆萌的代Ma  
这篇文章主要介绍了pytorch自定义loss损失函数,自定义loss的方法有很多,本文要介绍的是把loss作为一个pytorch的模块,下面详细资料需要的小伙伴可以参考一下

自定义loss的方法有很多,但是在博主查资料的时候发现有挺多写法会有问题,靠谱一点的方法是把loss作为一个pytorch的模块,

比如:

class CustomLoss(nn.Module): # 注意继承 nn.Module
    def __init__(self):
        super(CustomLoss, self).__init__()

    def forward(self, x, y):
        # .....这里写x与y的处理逻辑,即loss的计算方法
        return loss # 注意最后只能返回Tensor值,且带梯度,即 loss.requires_grad == True

示例代码:

以一个pytorch求解线性回归的代码为例:

import torch
import torch.nn as nn
import numpy as np
import os

os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"


def get_x_y():
    np.random.seed(0)
    x = np.random.randint(0, 50, 300)
    y_values = 2 * x + 21
    x = np.array(x, dtype=np.float32)
    y = np.array(y_values, dtype=np.float32)
    x = x.reshape(-1, 1)
    y = y.reshape(-1, 1)
    return x, y


class LinearRegressionModel(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(LinearRegressionModel, self).__init__()
        self.linear = nn.Linear(input_dim, output_dim)  # 输入的个数,输出的个数

    def forward(self, x):
        out = self.linear(x)
        return out


if __name__ == '__main__':
    input_dim = 1
    output_dim = 1
    x_train, y_train = get_x_y()

    model = LinearRegressionModel(input_dim, output_dim)
    epochs = 1000  # 迭代次数
    optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
    model_loss = nn.MSELoss() # 使用MSE作为loss
    # 开始训练模型
    for epoch in range(epochs):
        epoch += 1
        # 注意转行成tensor
        inputs = torch.from_numpy(x_train)
        labels = torch.from_numpy(y_train)
        # 梯度要清零每一次迭代
        optimizer.zero_grad()
        # 前向传播
        outputs: torch.Tensor = model(inputs)
        # 计算损失
        loss = model_loss(outputs, labels)
        # 返向传播
        loss.backward()
        # 更新权重参数
        optimizer.step()
        if epoch % 50 == 0:
            print('epoch {}, loss {}'.format(epoch, loss.item()))

步骤1:添加自定义的类

我们就用自定义的写法来写与MSE相同的效果,MSE计算公式如下:

添加一个类:

class CustomLoss(nn.Module):
    def __init__(self):
        super(CustomLoss, self).__init__()
        self.mse_loss = nn.MSELoss()

    def forward(self, x, y):
        mse_loss = torch.mean(torch.pow((x - y), 2)) # x与y相减后平方,求均值即为MSE
        return mse_loss

步骤2:修改使用的loss函数

只需要把原始代码中的:

model_loss = nn.MSELoss() # 使用MSE作为loss

改为:

model_loss = CustomLoss()  # 自定义loss

即可

完整代码:

import torch
import torch.nn as nn
import numpy as np
import os

os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"


def get_x_y():
    np.random.seed(0)
    x = np.random.randint(0, 50, 300)
    y_values = 2 * x + 21
    x = np.array(x, dtype=np.float32)
    y = np.array(y_values, dtype=np.float32)
    x = x.reshape(-1, 1)
    y = y.reshape(-1, 1)
    return x, y


class LinearRegressionModel(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(LinearRegressionModel, self).__init__()
        self.linear = nn.Linear(input_dim, output_dim)  # 输入的个数,输出的个数

    def forward(self, x):
        out = self.linear(x)
        return out


class CustomLoss(nn.Module):
    def __init__(self):
        super(CustomLoss, self).__init__()
        self.mse_loss = nn.MSELoss()

    def forward(self, x, y):
        mse_loss = torch.mean(torch.pow((x - y), 2))
        return mse_loss


if __name__ == '__main__':
    input_dim = 1
    output_dim = 1
    x_train, y_train = get_x_y()

    model = LinearRegressionModel(input_dim, output_dim)
    epochs = 1000  # 迭代次数
    optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
    # model_loss = nn.MSELoss() # 使用MSE作为loss
    model_loss = CustomLoss()  # 自定义loss
    # 开始训练模型
    for epoch in range(epochs):
        epoch += 1
        # 注意转行成tensor
        inputs = torch.from_numpy(x_train)
        labels = torch.from_numpy(y_train)
        # 梯度要清零每一次迭代
        optimizer.zero_grad()
        # 前向传播
        outputs: torch.Tensor = model(inputs)
        # 计算损失
        loss = model_loss(outputs, labels)
        # 返向传播
        loss.backward()
        # 更新权重参数
        optimizer.step()
        if epoch % 50 == 0:
            print('epoch {}, loss {}'.format(epoch, loss.item()))

到此这篇关于pytorch自定义loss损失函数的文章就介绍到这了,更多相关pytorch loss损失函数内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • pytest用例执行顺序和跳过执行详解

    pytest用例执行顺序和跳过执行详解

    本文主要介绍了pytest用例执行顺序和跳过执行详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02
  • pyecharts结合flask框架的使用

    pyecharts结合flask框架的使用

    这篇文章主要介绍了pyecharts结合flask框架,主要是介绍如何在Flask框架中使用pyecharts,本文通过示例代码给大家介绍的非常详细,需要的朋友可以参考下
    2022-06-06
  • python析构函数用法及注意事项

    python析构函数用法及注意事项

    在本篇文章里小编给大家整理的是一篇关于python析构函数用法及注意事项,有需要的朋友们可以学习参考下。
    2021-06-06
  • Python gRPC流式通信协议详细讲解

    Python gRPC流式通信协议详细讲解

    这篇文章主要介绍了Python gRPC流式通信协议,最近几天在搞golang的grpc,跑通之后想用php作为客户端调用一下grpc服务,结果拉了,一个php的grpc服务安装,搞了好几天,总算搞定了
    2022-11-11
  • Python3.6笔记之将程序运行结果输出到文件的方法

    Python3.6笔记之将程序运行结果输出到文件的方法

    下面小编就为大家分享一篇Python3.6笔记之将程序运行结果输出到文件的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-04-04
  • PyTorch加载模型model.load_state_dict()问题及解决

    PyTorch加载模型model.load_state_dict()问题及解决

    这篇文章主要介绍了PyTorch加载模型model.load_state_dict()问题及解决,具有很好的参考价值,希望对大家有所帮助。
    2023-02-02
  • 利用python将图片转换成excel文档格式

    利用python将图片转换成excel文档格式

    编写了一小段Python代码,将图片转为了Excel,纯属娱乐,下面这篇文章主要给大家介绍了关于利用python将图片转换成excel文档格式的相关资料,需要的朋友可以参考借鉴,下面来一起看看吧。
    2017-12-12
  • Python装饰器使用你可能不知道的几种姿势

    Python装饰器使用你可能不知道的几种姿势

    这篇文章主要给大家介绍了关于Python装饰器使用你可能不知道的几种姿势,文中通过示例代码介绍的非常详细,对大家的学习或者使用Python具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
    2019-10-10
  • python生成单位阵或对角阵的三种方式小结

    python生成单位阵或对角阵的三种方式小结

    这篇文章主要介绍了python生成单位阵或对角阵的三种方式小结,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-05-05
  • python中hasattr()、getattr()、setattr()函数的使用

    python中hasattr()、getattr()、setattr()函数的使用

    这篇文章主要介绍了python中hasattr()、getattr()、setattr()函数的使用方法,本文给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-08-08

最新评论