pytorch实现图像识别(实战)

 更新时间:2022年02月18日 08:41:51   作者:AI AX AT  
这篇文章主要介绍了pytorch实现图像识别(实战),文章主要分享实现代码,但也具有一定的参考价值,需要的小伙伴可以才可以一下,希望对你有所帮助

1. 代码讲解

1.1 导库

import os.path
from os import listdir
import numpy as np
import pandas as pd
from PIL import Image
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.nn import AdaptiveAvgPool2d
from torch.utils.data.sampler import SubsetRandomSampler
from torch.utils.data import Dataset
import torchvision.transforms as transforms
from sklearn.model_selection import train_test_split

1.2 标准化、transform、设置GPU

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
normalize = transforms.Normalize(
   mean=[0.485, 0.456, 0.406],
   std=[0.229, 0.224, 0.225]
)
transform = transforms.Compose([transforms.ToTensor(), normalize])  # 转换

1.3 预处理数据

class DogDataset(Dataset):
# 定义变量
    def __init__(self, img_paths, img_labels, size_of_images):  
        self.img_paths = img_paths
        self.img_labels = img_labels
        self.size_of_images = size_of_images

# 多少长图片
    def __len__(self):
        return len(self.img_paths)

# 打开每组图片并处理每张图片
    def __getitem__(self, index):
        PIL_IMAGE = Image.open(self.img_paths[index]).resize(self.size_of_images)
        TENSOR_IMAGE = transform(PIL_IMAGE)
        label = self.img_labels[index]
        return TENSOR_IMAGE, label


print(len(listdir(r'C:\Users\AIAXIT\Desktop\DeepLearningProject\Deep_Learning_Data\dog-breed-identification\train')))
print(len(pd.read_csv(r'C:\Users\AIAXIT\Desktop\DeepLearningProject\Deep_Learning_Data\dog-breed-identification\labels.csv')))
print(len(listdir(r'C:\Users\AIAXIT\Desktop\DeepLearningProject\Deep_Learning_Data\dog-breed-identification\test')))

train_paths = []
test_paths = []
labels = []
# 训练集图片路径
train_paths_lir = r'C:\Users\AIAXIT\Desktop\DeepLearningProject\Deep_Learning_Data\dog-breed-identification\train'
for path in listdir(train_paths_lir):
    train_paths.append(os.path.join(train_paths_lir, path))  
# 测试集图片路径
labels_data = pd.read_csv(r'C:\Users\AIAXIT\Desktop\DeepLearningProject\Deep_Learning_Data\dog-breed-identification\labels.csv')
labels_data = pd.DataFrame(labels_data)  
# 把字符标签离散化,因为数据有120种狗,不离散化后面把数据给模型时会报错:字符标签过多。把字符标签从0-119编号
size_mapping = {}
value = 0
size_mapping = dict(labels_data['breed'].value_counts())
for kay in size_mapping:
    size_mapping[kay] = value
    value += 1
# print(size_mapping)
labels = labels_data['breed'].map(size_mapping)
labels = list(labels)
# print(labels)
print(len(labels))
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(train_paths, labels, test_size=0.2)

train_set = DogDataset(X_train, y_train, (32, 32))
test_set = DogDataset(X_test, y_test, (32, 32))

train_loader = torch.utils.data.DataLoader(train_set, batch_size=64)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=64)

1.4 建立模型

class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()

        self.features = nn.Sequential(
            nn.Conv2d(in_channels=3, out_channels=6, kernel_size=5),  
            nn.ReLU(),
            nn.AvgPool2d(kernel_size=2, stride=2),
            nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5),
            nn.ReLU(),
            nn.AvgPool2d(kernel_size=2, stride=2)
        )
        self.classifier = nn.Sequential(
            nn.Linear(16 * 5 * 5, 120),
            nn.ReLU(),
            nn.Linear(120, 84),
            nn.ReLU(),
            nn.Linear(84, 120)
        )

    def forward(self, x):
        batch_size = x.shape[0]
        x = self.features(x)
        x = x.view(batch_size, -1)
        x = self.classifier(x)
        return x


model = LeNet().to(device)
criterion = nn.CrossEntropyLoss().to(device)
optimizer = optim.Adam(model.parameters())
TRAIN_LOSS = []  # 损失
TRAIN_ACCURACY = []  # 准确率

1.5 训练模型

def train(epoch):
    model.train()
    epoch_loss = 0.0 # 损失
    correct = 0  # 精确率
    for batch_index, (Data, Label) in enumerate(train_loader):
    # 扔到GPU中
        Data = Data.to(device)
        Label = Label.to(device)
        output_train = model(Data)
    # 计算损失
        loss_train = criterion(output_train, Label)
        epoch_loss = epoch_loss + loss_train.item()
    # 计算精确率
        pred = torch.max(output_train, 1)[1]
        train_correct = (pred == Label).sum()
        correct = correct + train_correct.item()
    # 梯度归零、反向传播、更新参数
        optimizer.zero_grad()
        loss_train.backward()
        optimizer.step()
    print('Epoch: ', epoch, 'Train_loss: ', epoch_loss / len(train_set), 'Train correct: ', correct / len(train_set))

1.6 测试模型

和训练集差不多。

def test():
    model.eval()
    correct = 0.0
    test_loss = 0.0
    with torch.no_grad():
        for Data, Label in test_loader:
            Data = Data.to(device)
            Label = Label.to(device)
            test_output = model(Data)
            loss = criterion(test_output, Label)
            pred = torch.max(test_output, 1)[1]
            test_correct = (pred == Label).sum()
            correct = correct + test_correct.item()
            test_loss = test_loss + loss.item()
    print('Test_loss: ', test_loss / len(test_set), 'Test correct: ', correct / len(test_set))

1.7结果

epoch = 10
for n_epoch in range(epoch):
    train(n_epoch)
test()

到此这篇关于pytorch实现图像识别(实战)的文章就介绍到这了,更多相关pytorch实现图像识别内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python+OpenCV数字图像处理之ROI区域的提取

    Python+OpenCV数字图像处理之ROI区域的提取

    ROI区域又叫感兴趣区域。在机器视觉、图像处理中,从被处理的图像以方框、圆、椭圆、不规则多边形等方式勾勒出需要处理的区域,称为感兴趣区域,ROI。本文主要为大家介绍如何通过Python+OpenCV提取ROI区域,需要的朋友可以了解一下
    2021-12-12
  • python+tkinter编写电脑桌面放大镜程序实例代码

    python+tkinter编写电脑桌面放大镜程序实例代码

    这篇文章主要介绍了Python+tkinter编写电脑桌面放大镜程序实例代码,具有一定借鉴价值,需要的朋友可以参考下
    2018-01-01
  • 详细聊聊为什么Python中0.2+0.1不等于0.3

    详细聊聊为什么Python中0.2+0.1不等于0.3

    最近在学习过程中发现在计算机JS时发现了一个非常有意思事,0.1+0.2的结果不是0.3,而是0.30000000000000004,下面这篇文章主要给大家介绍了关于为什么Python中0.2+0.1不等于0.3的相关资料,需要的朋友可以参考下
    2022-12-12
  • python中使用docx模块处理word文档

    python中使用docx模块处理word文档

    这篇文章主要介绍了python中使用docx模块处理word文档的相关资料,需要的朋友可以参考下
    2023-01-01
  • python使用matplotlib:subplot绘制多个子图的示例

    python使用matplotlib:subplot绘制多个子图的示例

    这篇文章主要介绍了python使用matplotlib:subplot绘制多个子图的示例,帮助大家更好的利用python绘制图像,感兴趣的朋友可以了解下
    2020-09-09
  • Python通过zookeeper实现分布式服务代码解析

    Python通过zookeeper实现分布式服务代码解析

    这篇文章主要介绍了Python通过zookeeper实现分布式服务代码解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-07-07
  • python 实现A*算法的示例代码

    python 实现A*算法的示例代码

    本篇文章主要介绍了python 实现A*算法的示例代码,A*作为最常用的路径搜索算法,值得我们去深刻的研究,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-08-08
  • tensorflow构建BP神经网络的方法

    tensorflow构建BP神经网络的方法

    这篇文章主要为大家详细介绍了tensorflow构建BP神经网络的方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-03-03
  • python 统计数组中元素出现次数并进行排序的实例

    python 统计数组中元素出现次数并进行排序的实例

    今天小编就为大家分享一篇python 统计数组中元素出现次数并进行排序的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-07-07
  • django admin实现动态多选框表单的示例代码

    django admin实现动态多选框表单的示例代码

    借助django-admin,可以快速得到CRUD界面,但若需要创建多选标签字段时,需要对表单进行调整,本文通过示例代码给大家介绍django admin多选框表单的实现方法,感兴趣的朋友跟随小编一起看看吧
    2021-05-05

最新评论