如何利用 Python 绘制动态可视化图表

 更新时间:2022年02月25日 10:18:54   作者:Python数据挖掘  
这篇文章主要介绍了如何利用 Python 绘制动态可视化图表,主要介绍介绍如何进行保存gif格式的文件。那么我们就开始进入主题,来谈一下Python当中的gif模块,需要的朋友可以参考一下

一、安装相关的模块

首先第一步的话我们需要安装相关的模块,通过pip命令来安装

pip install gif

另外由于gif模块之后会被当做是装饰器放在绘制可视化图表的函数上,主要我们依赖的还是Python当中绘制可视化图表的matplotlibplotly、以及altair这些模块,因此我们还需要下面这几个库

pip install "gif[altair]"    
pip install "gif[matplotlib]"
pip install "gif[plotly]"

二、gif和matplotlib的结合

我们先来看gifmatplotlib模块的结合,我们先来看一个简单的例子,

代码如下:

import random
from matplotlib import pyplot as plt
import gif

x = [random.randint(0, 100) for _ in range(100)]
y = [random.randint(0, 100) for _ in range(100)]

gif.options.matplotlib["dpi"] = 300

@gif.frame
def plot(i):
    xi = x[i*10:(i+1)*10]
    yi = y[i*10:(i+1)*10]
    plt.scatter(xi, yi)
    plt.xlim((0, 100))
    plt.ylim((0, 100))

frames = []
for i in range(10):
    frame = plot(i)
    frames.append(frame)

gif.save(frames, 'example.gif', duration=3.5, unit="s", between="startend")

output:

代码的逻辑并不难理解,首先我们需要定义一个函数来绘制图表并且带上gif装饰器,接着我们需要一个空的列表,通过for循环将绘制出来的对象放到这个空列表当中然后保存成gif格式的文件即可。

三、gif和plotly的结合

除了和matplotlib的联用之外,gifplotly之间也可以结合起来用

代码如下:

import random
import plotly.graph_objects as go
import pandas as pd
import gif

df = pd.DataFrame({
    't': list(range(10)) * 10,
    'x': [random.randint(0, 100) for _ in range(100)],
    'y': [random.randint(0, 100) for _ in range(100)]
})

@gif.frame
def plot(i):
    d = df[df['t'] == i]
    fig = go.Figure()
    fig.add_trace(go.Scatter(
        x=d["x"],
        y=d["y"],
        mode="markers"
    ))
    fig.update_layout(width=500, height=300)
    return fig

frames = []
for i in range(10):
    frame = plot(i)
    frames.append(frame)

gif.save(frames, 'example_plotly.gif', duration=100)

output:

整体的代码逻辑和上面的相似,这里也就不做具体的说明了

四、matplotlib多子图动态可视化

上面绘制出来的图表都是在单张图表当中进行的,那当然了我们还可以在多张子图中进行动态可视化的展示,

代码如下:

# 读取数据
df = pd.read_csv('weather_hourly_darksky.csv')
df = df.rename(columns={"time": "date"})

@gif.frame
def plot(df, date):
    df = df.loc[df.index[0]:pd.Timestamp(date)]

    fig, (ax1, ax2, ax3) = plt.subplots(3, figsize=(10, 6), dpi=100)

    ax1.plot(df.temperature, marker='o', linestyle='--', linewidth=1, markersize=3, color='g')
    maxi = round(df.temperature.max() + 3)
    ax1.set_xlim([START, END])
    ax1.set_ylim([0, maxi])
    ax1.set_ylabel('TEMPERATURE', color='green')

    ax2.plot(df.windSpeed, marker='o', linestyle='--', linewidth=1, markersize=3, color='b')
    maxi = round(df.windSpeed.max() + 3)
    ax2.set_xlim([START, END])
    ax2.set_ylim([0, maxi])
    ax2.set_ylabel('WIND', color='blue')

    ax3.plot(df.visibility, marker='o', linestyle='--', linewidth=1, markersize=3, color='r')
    maxi = round(df.visibility.max() + 3)
    ax3.set_xlim([START, END])
    ax3.set_ylim([0, maxi])
    ax3.set_ylabel('VISIBILITY', color='red')

frames = []
for date in pd.date_range(start=df.index[0], end=df.index[-1], freq='1M'):
    frame = plot(df, date)
    frames.append(frame)

gif.save(frames, "文件名称.gif", duration=0.5, unit='s')

output:

五、动态气泡图

最后我们用plotly模块来绘制一个动态的气泡图,

代码如下:

import gif
import plotly.graph_objects as go
import numpy as np
np.random.seed(1)

N = 100
x = np.random.rand(N)
y = np.random.rand(N)
colors = np.random.rand(N)
sz = np.random.rand(N) * 30

layout = go.Layout(
    xaxis={'range': [-2, 2]},
    yaxis={'range': [-2, 2]},
    margin=dict(l=10, r=10, t=10, b=10)
)

@gif.frame
def plot(i):
    fig = go.Figure(layout=layout)
    fig.add_trace(go.Scatter(
        x=x[:i],
        y=y[:i],
        mode="markers",
        marker=go.scatter.Marker(
            size=sz[:i],
            color=colors[:i],
            opacity=0.6,
            colorscale="Viridis"
        )
    ))
    fig.update_layout(width=500, height=300)
    return fig

frames = []
for i in range(100):
    frame = plot(i)
    frames.append(frame)

gif.save(frames, "bubble.gif")

output:

到此这篇关于如何利用 Python 绘制动态可视化图表的文章就介绍到这了,更多相关Python 绘制动态可视化图表内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python使用while循环花式打印乘法表

    Python使用while循环花式打印乘法表

    今天小编就为大家分享一篇关于Python使用while循环花式打印乘法表,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
    2019-01-01
  • pytorch中index_select()的用法详解

    pytorch中index_select()的用法详解

    这篇文章主要介绍了pytorch中index_select()的用法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-01-01
  • Python3.4学习笔记之常用操作符,条件分支和循环用法示例

    Python3.4学习笔记之常用操作符,条件分支和循环用法示例

    这篇文章主要介绍了Python3.4常用操作符,条件分支和循环用法,结合实例形式较为详细的分析了Python3.4常见的数学运算、逻辑运算操作符,条件分支语句,循环语句等功能与基本用法,需要的朋友可以参考下
    2019-03-03
  • python中pop()函数的语法与实例

    python中pop()函数的语法与实例

    这篇文章主要给大家介绍了关于python中pop()函数语法与实例的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-12-12
  • Django框架 Pagination分页实现代码实例

    Django框架 Pagination分页实现代码实例

    这篇文章主要介绍了Django框架 Pagination分页实现代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-09-09
  • python保留小数函数的几种使用总结

    python保留小数函数的几种使用总结

    本文主要介绍了python保留小数函数的几种使用总结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02
  • pip安装Python库时遇到的问题及解决方法

    pip安装Python库时遇到的问题及解决方法

    这篇文章主要介绍了pip安装Python库时遇到的问题及解决方法,非常不错,具有参考借鉴价值,需要的朋友可以参考下
    2017-11-11
  • Python实现的基于优先等级分配糖果问题算法示例

    Python实现的基于优先等级分配糖果问题算法示例

    这篇文章主要介绍了Python实现的基于优先等级分配糖果问题算法,涉及Python针对列表的遍历、判断、计算等相关操作技巧,需要的朋友可以参考下
    2018-04-04
  • python生成器用法实例详解

    python生成器用法实例详解

    这篇文章主要介绍了python生成器用法,结合实例形式详细分析了Python生成器相关原理、创建、使用方法及操作注意事项,需要的朋友可以参考下
    2019-11-11
  • python 直接赋值和copy的区别详解

    python 直接赋值和copy的区别详解

    这篇文章主要介绍了python 直接赋值和copy的区别详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-08-08

最新评论