PyTorch中的squeeze()和unsqueeze()解析与应用案例

 更新时间:2022年03月16日 09:44:31   作者:易烊千蝈  
这篇文章主要介绍了PyTorch中的squeeze()和unsqueeze()解析与应用案例,文章内容介绍详细,需要的小伙伴可以参考一下,希望对你有所帮助

附上官网地址:

https://pytorch.org/docs/stable/index.html

1.torch.squeeze

squeeze的用法主要就是对数据的维度进行压缩或者解压。

先看torch.squeeze() 这个函数主要对数据的维度进行压缩,去掉维数为1的的维度,比如是一行或者一列这种,一个一行三列(1,3)的数去掉第一个维数为一的维度之后就变成(3)行。squeeze(a)就是将a中所有为1的维度删掉。不为1的维度没有影响。a.squeeze(N) 就是去掉a中指定的维数为一的维度。还有一种形式就是b=torch.squeeze(a,N) a中去掉指定的定的维数为一的维度。

换言之:

表示若第arg维的维度值为1,则去掉该维度,否则tensor不变。(即若tensor.shape()[arg] == 1,则去掉该维度)

例如:

一个维度为2x1x2x1x2的tensor,不用去想它长什么样儿,squeeze(0)就是不变,squeeze(1)就是变成2x2x1x2。(0是从最左边的维度算起的)

>>> x = torch.zeros(2, 1, 2, 1, 2)
>>> x.size()
torch.Size([2, 1, 2, 1, 2])
>>> y = torch.squeeze(x)
>>> y.size()
torch.Size([2, 2, 2])
>>> y = torch.squeeze(x, 0)
>>> y.size()
torch.Size([2, 1, 2, 1, 2])
>>> y = torch.squeeze(x, 1)
>>> y.size()
torch.Size([2, 2, 1, 2])

2.torch.unsqueeze

torch.unsqueeze()这个函数主要是对数据维度进行扩充。给指定位置加上维数为一的维度,比如原本有个三行的数据(3),在0的位置加了一维就变成一行三列(1,3)。a.squeeze(N) 就是在a中指定位置N加上一个维数为1的维度。还有一种形式就是b=torch.squeeze(a,N) a就是在a中指定位置N加上一个维数为1的维度。

>>> x = torch.tensor([1, 2, 3, 4])
>>> torch.unsqueeze(x, 0)
tensor([[ 1,  2,  3,  4]])
>>> torch.unsqueeze(x, 1)
tensor([[ 1],
        [ 2],
        [ 3],
        [ 4]])

3.例子

给一个使用上述两个函数,并进行一次卷积的例子:

from torchvision.transforms import  ToTensor
import torch as t
from torch import nnimport cv2
import numpy as np
import cv2
to_tensor = ToTensor()
# 加载图像
lena = cv2.imread('lena.jpg', cv2.IMREAD_GRAYSCALE)
cv2.imshow('lena', lena)
# input = to_tensor(lena) 将ndarray转换为tensor,自动将[0,255]归一化至[0,1]。
input = to_tensor(lena).unsqueeze(0)
# 初始化卷积参数
kernel = t.ones(1, 1, 3, 3)/-9
kernel[:, :, 1, 1] = 1
conv = nn.Conv2d(1, 1, 3, 1, padding=1, bias=False)
conv.weight.data = kernel.view(1, 1, 3, 3)
# 输出
out = conv(input)
out = out.squeeze(0)
print(out.shape)
out = out.unsqueeze(3)
print(out.shape)
out = out.squeeze(0)
print(out.shape)
out = out.detach().numpy()# 缩放到0~最大值
cv2.normalize(out, out, 1.0, 0, cv2.NORM_INF)
cv2.imshow("lena-result", out)
cv2.waitKey()

结果图如下:

到此这篇关于PyTorch中的squeeze()unsqueeze()解析与应用案例的文章就介绍到这了,更多相关squeeze()和unsqueeze()解析内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

references:
[1] 陈云.深度学习框架之PyTorch入门与实践.北京:电子工业出版社,2018.

相关文章

  • matplotlib对象拾取事件处理的实现

    matplotlib对象拾取事件处理的实现

    这篇文章主要介绍了matplotlib对象拾取事件处理的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-01-01
  • 简单总结Python中序列与字典的相同和不同之处

    简单总结Python中序列与字典的相同和不同之处

    这篇文章主要介绍了Python中序列与字典的相同和不同之处,序列这里讲到Python中最常用的列表和元组以及字典三种,需要的朋友可以参考下
    2016-01-01
  • pytorch中unsqueeze用法小结

    pytorch中unsqueeze用法小结

    unsqueeze()的作用是用来增加给定tensor的维度的,本文主要介绍了pytorch中unsqueeze用法小结,具有一定的参考价值,感兴趣的可以了解一下
    2024-04-04
  • 关于PyTorch中nn.Module类的简介

    关于PyTorch中nn.Module类的简介

    这篇文章主要介绍了关于PyTorch中nn.Module类的简介,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-02-02
  • python人工智能自定义求导tf_diffs详解

    python人工智能自定义求导tf_diffs详解

    这篇文章主要为大家介绍了python人工智能自定义求导tf_diffs详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-07-07
  • 解决TensorFlow训练模型及保存数量限制的问题

    解决TensorFlow训练模型及保存数量限制的问题

    这篇文章主要介绍了解决TensorFlow训练模型及保存数量限制的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03
  • python绘制高斯曲线

    python绘制高斯曲线

    这篇文章主要为大家详细介绍了python绘制高斯曲线,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-02-02
  • 解决Python发送Http请求时,中文乱码的问题

    解决Python发送Http请求时,中文乱码的问题

    这篇文章主要介绍了解决Python发送Http请求时,中文乱码的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-04-04
  • python程序快速缩进多行代码方法总结

    python程序快速缩进多行代码方法总结

    在本篇文章里小编给大家整理了关于python程序如何快速缩进多行代码的相关知识点,需要的朋友们学习下。
    2019-06-06
  • 想学python 这5本书籍你必看!

    想学python 这5本书籍你必看!

    想学python,这5本书籍你必看!本文为大家推荐了学习python的5本书籍,5本经典书籍,感兴趣的小伙伴们可以参考一下
    2018-12-12

最新评论