pytorch hook 钩子函数的用法

 更新时间:2022年03月23日 09:54:42   作者:ctrl A_ctrl C_ctrl V  
这篇文章主要介绍了pytorch hook 钩子函数的用法,Hook 是 PyTorch 中一个十分有用的特性,使用后可以不必改变网络输入输出的结构,方便地获取、改变网络中间层变量的值和梯度,下文详细介绍需要的小伙伴可以参考一下

钩子编程(hooking),也称作“挂钩”,是计算机程序设计术语,指通过拦截软件模块间的函数调用、消息传递、事件传递来修改或扩展操作系统、应用程序或其他软件组件的行为的各种技术。处理被拦截的函数调用、事件、消息的代码,被称为钩子(hook)。

Hook 是 PyTorch 中一个十分有用的特性。利用它,我们可以不必改变网络输入输出的结构,方便地获取、改变网络中间层变量的值和梯度。这个功能被广泛用于可视化神经网络中间层的 featuregradient,从而诊断神经网络中可能出现的问题,分析网络有效性。

本文主要用 hook 函数输出网络执行过程中 forward 和 backward 的执行顺序,以此找到了bug所在。

用法如下:

# 设置hook func
def hook_func(name, module):
    def hook_function(module, inputs, outputs):
        # 请依据使用场景自定义函数
        print(name+' inputs', inputs)
        print(name+' outputs', outputs)
    return hook_function

# 注册正反向hook
for name, module in model.named_modules():
    module.register_forward_hook(hook_func('[forward]: '+name, module))
    module.register_backward_hook(hook_func('[backward]: '+name, module))

如一个简单的 MNIST 手写数字识别的模型结构如下:

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 32, 3, 1)
        self.conv2 = nn.Conv2d(32, 64, 3, 1)
        self.dropout1 = nn.Dropout(0.25)
        self.dropout2 = nn.Dropout(0.5)
        self.fc1 = nn.Linear(9216, 128)
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = F.relu(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = F.max_pool2d(x, 2)
        x = self.dropout1(x)
        x = torch.flatten(x, 1)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.dropout2(x)
        x = self.fc2(x)
        output = F.log_softmax(x, dim=1)
        return output

打印模型:

Net(
  (conv1): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1))
  (conv2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1))
  (dropout1): Dropout(p=0.25, inplace=False)
  (dropout2): Dropout(p=0.5, inplace=False)
  (fc1): Linear(in_features=9216, out_features=128, bias=True)
  (fc2): Linear(in_features=128, out_features=10, bias=True)
)

构建hook函数:

# 设置hook func
def hook_func(name, module):
    def hook_function(module, inputs, outputs):
        with open("log_model.txt", 'a+') as f:
            # 请依据使用场景自定义函数
            f.write(name + '   len(inputs): ' + str(len(inputs)) + '\n')
            f.write(name + '   len(outputs):  ' + str(len(outputs)) + '\n')
    return hook_function

# 注册正反向hook
for name, module in model.named_modules():
    module.register_forward_hook(hook_func('[forward]: '+name, module))
    module.register_backward_hook(hook_func('[backward]: '+name, module))

输出的前向和反向传播过程:

[forward]: conv1   len(inputs): 1
[forward]: conv1   len(outputs):  8
[forward]: conv2   len(inputs): 1
[forward]: conv2   len(outputs):  8
[forward]: dropout1   len(inputs): 1
[forward]: dropout1   len(outputs):  8
[forward]: fc1   len(inputs): 1
[forward]: fc1   len(outputs):  8
[forward]: dropout2   len(inputs): 1
[forward]: dropout2   len(outputs):  8
[forward]: fc2   len(inputs): 1
[forward]: fc2   len(outputs):  8
[forward]:    len(inputs): 1
[forward]:    len(outputs):  8
[backward]:    len(inputs): 2
[backward]:    len(outputs):  1
[backward]: fc2   len(inputs): 3
[backward]: fc2   len(outputs):  1
[backward]: dropout2   len(inputs): 1
[backward]: dropout2   len(outputs):  1
[backward]: fc1   len(inputs): 3
[backward]: fc1   len(outputs):  1
[backward]: dropout1   len(inputs): 1
[backward]: dropout1   len(outputs):  1
[backward]: conv2   len(inputs): 2
[backward]: conv2   len(outputs):  1
[backward]: conv1   len(inputs): 2
[backward]: conv1   len(outputs):  1

因为只要模型处于train状态,hook_func 就会执行,导致不断输出 [forward] 和 [backward],所以将输出内容建议写到文件中,而不是 print

到此这篇关于pytorch hook 钩子函数的用法的文章就介绍到这了,更多相关pytorch hook 钩子函数内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 运用Python巧妙处理Word文档的方法详解

    运用Python巧妙处理Word文档的方法详解

    大家平时在工作与学习中都会操作到Word文件格式,特别是很多数据的时候,靠人力去识别操作非常容易出错。今天就带大家用python来处理Word文件,感兴趣的可以了解一下
    2022-05-05
  • python for循环如何实现控制步长

    python for循环如何实现控制步长

    这篇文章主要介绍了python for循环如何实现控制步长,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-05-05
  • Python多线程经典问题之乘客做公交车算法实例

    Python多线程经典问题之乘客做公交车算法实例

    这篇文章主要介绍了Python多线程经典问题之乘客做公交车算法,简单描述了乘客坐公交车问题并结合实例形式分析了Python多线程实现乘客坐公交车算法的相关技巧,需要的朋友可以参考下
    2017-03-03
  • Python制作简易注册登录系统

    Python制作简易注册登录系统

    这篇文章主要为大家详细介绍了Python简易注册登录系统的制作方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2016-12-12
  • Python利用pip安装tar.gz格式的离线资源包

    Python利用pip安装tar.gz格式的离线资源包

    这篇文章主要给大家介绍了关于Python利用pip安装tar.gz格式的离线资源包的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-09-09
  • Python多线程使用方法详细讲解

    Python多线程使用方法详细讲解

    这篇文章主要介绍了Python中的多线程实例,一个CPU,将时间切成一片一片的,CPU轮转着去处理一件一件的事情,到了规定的时间片就处理下一件事情,更多的相关内容需要的小伙伴可以参考下面文章详细
    2022-10-10
  • Python Requests库及用法详解

    Python Requests库及用法详解

    Requests库作为Python中最受欢迎的HTTP库之一,为开发人员提供了简单而强大的方式来发送HTTP请求和处理响应,本文将带领您深入探索Python Requests库的世界,我们将从基础知识开始,逐步深入,覆盖各种高级用法和技巧,感兴趣的朋友一起看看吧
    2024-06-06
  • Python读写文件方法总结

    Python读写文件方法总结

    这篇文章主要介绍了Python读写文件方法,实例分析了Python读写文件常用的方法与使用技巧,需要的朋友可以参考下
    2015-06-06
  • pandas分区间,算频率的实例

    pandas分区间,算频率的实例

    今天小编就为大家分享一篇pandas分区间,算频率的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • Python控制台输出时刷新当前行内容而不是输出新行的实现

    Python控制台输出时刷新当前行内容而不是输出新行的实现

    今天小编就为大家分享一篇Python控制台输出时刷新当前行内容而不是输出新行的实现,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02

最新评论