numpy模块中axis的理解与使用

 更新时间:2022年03月24日 11:07:54   作者:fangjian1204  
而在numpy中有很多的函数都涉及到axis,numpy中的轴axis是很重要的,许多numpy的操作根据axis的取值不同,作出的操作也不相同,这篇文章主要给大家介绍了关于numpy模块中axis的理解与使用的相关资料,需要的朋友可以参考下

首先为什么会有axis这个概念?

因为在numpy模块中,大多数处理的是矩阵或者多维数组,同时,对多维数组或者矩阵的操作有多种可能,为了帮助实现对数组或矩阵各种各样的功能,就有了axis

下面举个例子,选取不同的axis,对二维数组进行sum,mean,min,max的操作

>>> import numpy as np
>>> arr=np.arange(16).reshape(2,4,2)
>>> arr
array([[[ 0,  1],
        [ 2,  3],
        [ 4,  5],
        [ 6,  7]],

       [[ 8,  9],
        [10, 11],
        [12, 13],
        [14, 15]]])

axis的作用即如何理解

numpy是python进行科学计算必不可少的模块,随着深度学习越来越火,numpy也越来越流行。了解numpy的人知道,在numpy中,有很多的函数都涉及到axis,很多函数根据axis的取值不同,得到的结果也完全不同。可以说,axis让numpy的多维数组变的更加灵活,但也让numpy变得越发难以理解。这里通过详细的例子来学习下,axis到底是什么,它在numpy中的作用到底如何。

为什么会有axis这个东西,原因很简单:numpy是针对矩阵或者多为数组进行运算的,而在多维数组中,对数据的操作有太多的可能,我们先来看一个例子。比如我们有一个二维数组:

>>> import numpy as np
>>> data = np.array([
... [1,2,1],
... [0,3,1],
... [2,1,4],
... [1,3,1]])

这个数组代表了样本数据的特征,其中每一行代表一个样本的三个特征,每一列是不同样本的特征。如果在分析样本的过程中需要对每个样本的三个特征求和,该如何处理?简单:

>>> np.sum(data, axis=1)
array([4, 4, 7, 5])

那如果想求每种特征的最小值,该如何处理?也简单:

>>> np.min(data, axis=0)
array([0, 1, 1])

又如果想得知所有样本所有特征的平均值呢?还是很简单:

>>> np.average(data)
1.6666666666666667

由此可以看出,通过不同的axis,numpy会沿着不同的方向进行操作:如果不设置,那么对所有的元素操作;如果axis=0,则沿着纵轴进行操作;axis=1,则沿着横轴进行操作。但这只是简单的二位数组,如果是多维的呢?可以总结为一句话:设axis=i,则numpy沿着第i个下标变化的放下进行操作。例如刚刚的例子,可以将表示为:data =[[a00, a01],[a10,a11]],所以axis=0时,沿着第0个下标变化的方向进行操作,也就是a00->a10, a01->a11,也就是纵坐标的方向,axis=1时也类似。下面我们举一个四维的求sum的例子来验证一下:

>>> data = np.random.randint(0, 5, [4,3,2,3])
>>> data
array([[[[4, 1, 0],
         [4, 3, 0]],
        [[1, 2, 4],
         [2, 2, 3]],
        [[4, 3, 3],
         [4, 2, 3]]],

       [[[4, 0, 1],
         [1, 1, 1]],
        [[0, 1, 0],
         [0, 4, 1]],
        [[1, 3, 0],
         [0, 3, 0]]],

       [[[3, 3, 4],
         [0, 1, 0]],
        [[1, 2, 3],
         [4, 0, 4]],
        [[1, 4, 1],
         [1, 3, 2]]],

       [[[0, 1, 1],
         [2, 4, 3]],
        [[4, 1, 4],
         [1, 4, 1]],
        [[0, 1, 0],
         [2, 4, 3]]]])

当axis=0时,numpy验证第0维的方向来求和,也就是第一个元素值=a0000+a1000+a2000+a3000=11,第二个元素=a0001+a1001+a2001+a3001=5,同理可得最后的结果如下:

>>> data.sum(axis=0)
array([[[11,  5,  6],
        [ 7,  9,  4]],

       [[ 6,  6, 11],
        [ 7, 10,  9]],

       [[ 6, 11,  4],
        [ 7, 12,  8]]])

当axis=3时,numpy验证第3维的方向来求和,也就是第一个元素值=a0000+a0001+a0002=5,第二个元素=a0010+a0011+a0012=7,同理可得最后的结果如下:

>>> data.sum(axis=3)
array([[[ 5,  7],
        [ 7,  7],
        [10,  9]],

       [[ 5,  3],
        [ 1,  5],
        [ 4,  3]],

       [[10,  1],
        [ 6,  8],
        [ 6,  6]],

       [[ 2,  9],
        [ 9,  6],
        [ 1,  9]]])

使用axis的相关函数

在numpy中,使用的axis的地方非常多,处理上文已经提到的average、max、min、sum,比较常见的还有sort和prod,下面分别举几个例子看一下:

sort

>>> data = np.random.randint(0, 5, [3,2,3])
>>> data
array([[[4, 2, 0],
        [0, 0, 4]],

       [[2, 1, 1],
        [1, 0, 2]],

       [[3, 0, 4],
        [0, 1, 3]]])
>>> np.sort(data)  ## 默认对最大的axis进行排序,这里即是axis=2
array([[[0, 2, 4],
        [0, 0, 4]],

       [[1, 1, 2],
        [0, 1, 2]],

       [[0, 3, 4],
        [0, 1, 3]]])
>>> np.sort(data, axis=0)  # 沿着第0维进行排序,原先的a000->a100->a200转变为a100->a200->a000
array([[[2, 0, 0],
        [0, 0, 2]],

       [[3, 1, 1],
        [0, 0, 3]],

       [[4, 2, 4],
        [1, 1, 4]]])
>>> np.sort(data, axis=1)  # 沿着第1维进行排序
array([[[0, 0, 0],
        [4, 2, 4]],

       [[1, 0, 1],
        [2, 1, 2]],

       [[0, 0, 3],
        [3, 1, 4]]])
>>> np.sort(data, axis=2)  # 沿着第2维进行排序
array([[[0, 2, 4],
        [0, 0, 4]],

       [[1, 1, 2],
        [0, 1, 2]],

       [[0, 3, 4],
        [0, 1, 3]]])
>>> np.sort(data, axis=None)  # 对全部数据进行排序
array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4])

prod(即product,乘积)

 >>> np.prod([[1.,2.],[3.,4.]])
 24.0

 >>> np.prod([[1.,2.],[3.,4.]], axis=1)
 array([  2.,  12.])

 >>> np.prod([[1.,2.],[3.,4.]], axis=0)
 array([ 3.,  8.])

相信通过上面的讲解与例子,你应该对axis有了比较清楚的了解。个人认为,如果没有理解axis的真正含义,很难熟悉的运用numpy进行数据处理

总结

到此这篇关于numpy模块中axis的理解与使用的文章就介绍到这了,更多相关numpy模块axis内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python正则表达式(更长的正则表达式示例)示例代码

    Python正则表达式(更长的正则表达式示例)示例代码

    正则表达式是一种强大的文本模式匹配工具,被广泛应用于字符串的搜索、替换、验证等场景,这篇文章主要介绍了Python正则表达式(更长的正则表达式示例)的相关资料,需要的朋友可以参考下
    2025-12-12
  • pycharm 快速解决python代码冲突的问题

    pycharm 快速解决python代码冲突的问题

    这篇文章主要介绍了pycharm 快速解决python代码冲突的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-01-01
  • Pydantic中BaseConfig的具体使用

    Pydantic中BaseConfig的具体使用

    本文主要介绍了Pydantic中BaseConfig的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2024-06-06
  • Python多线程与多进程相关知识总结

    Python多线程与多进程相关知识总结

    进程(process)和线程(thread)是操作系统的基本概念,是操作系统程序运行的基本单元,本文简要介绍进程和线程的概念以及Python中的多进程和多线程.需要的朋友可以参考下
    2021-05-05
  • OpenCV图像修复cv2.inpaint()的使用

    OpenCV图像修复cv2.inpaint()的使用

    这篇博客将介绍如何通过OpenCV中图像修复的技术——cv2.inpaint() 去除旧照片中的小噪音、笔划等。并提供一个可交互式的程序,感兴趣的可以了解一下
    2021-08-08
  • Python字符串不可不知的6个小技巧分享

    Python字符串不可不知的6个小技巧分享

    字符串可以理解为一段普通的文本内容,在python里,使用引号来表示一个字符串,不同的引号表示的效果会有区别,本文将给介绍Python字符串不可不知的6个小技巧分享,并有详细的代码供大家参考,感兴趣的小伙伴可以参考一下
    2024-03-03
  • Python自动化办公技巧分享

    Python自动化办公技巧分享

    Python自动化办公是指用Python程序来完成某些需要重复性操作的工作,例如大批量的文件处理等,本篇文章将介绍Python自动化办公的基本概念和常用技术,希望能对Python初学者提供一些帮助
    2023-06-06
  • Python读取一个目录下所有目录和文件的方法

    Python读取一个目录下所有目录和文件的方法

    这篇文章主要介绍了Python读取一个目录下所有目录和文件的方法,涉及Python针对目录和文件的遍历与运算操作相关技巧,需要的朋友可以参考下
    2016-07-07
  • Python OpenCV实现识别信用卡号教程详解

    Python OpenCV实现识别信用卡号教程详解

    本文将介绍如何通过 OpenCV 和 Python 使用模板匹配来执行光学字符识别 (OCR),再应用我们的模板匹配 OCR 方法来识别信用卡类型以及 16 位信用卡数字。代码具有一定价值,感兴趣的童鞋可以了解一下
    2021-11-11
  • Python爬虫实例之2021猫眼票房字体加密反爬策略(粗略版)

    Python爬虫实例之2021猫眼票房字体加密反爬策略(粗略版)

    这篇文章主要介绍了Python爬虫实例之2021猫眼票房字体加密反爬策略(粗略版),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-02-02

最新评论