如何使用yolov5输出检测到的目标坐标信息

 更新时间:2022年03月28日 09:34:45   作者:一位安分的码农  
YOLOv5是一系列在 COCO 数据集上预训练的对象检测架构和模型,下面这篇文章主要给大家介绍了关于如何使用yolov5输出检测到的目标坐标信息的相关资料,需要的朋友可以参考下

找到detect.py,在大概113行,找到plot_one_box

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * 5 + '\n') % (cls, *xywh))  # label format

                    if save_img or view_img:  # Add bbox to image
                        label = '%s %.2f' % (names[int(cls)], conf)
                        plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)

ctr+鼠标点击,进入general.py,并自动定位到plot_one_box函数,修改函数为

def plot_one_box(x, img, color=None, label=None, line_thickness=None):
    # Plots one bounding box on image img
    tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1  # line/font thickness
    color = color or [random.randint(0, 255) for _ in range(3)]
    c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
    cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
    print("左上点的坐标为:(" + str(c1[0]) + "," + str(c1[1]) + "),右下点的坐标为(" + str(c2[0]) + "," + str(c2[1]) + ")")

即可输出目标坐标信息了

附:python yolov5检测模型返回坐标的方法实例代码

python yolov5检测模型返回坐标的方法 直接搜索以下代码替换下 

 if save_img or view_img:  # Add bbox to image
                        label = f'{names[int(cls)]} {conf:.2f}'
                        c1, c2 = (int(xyxy[0]), int(xyxy[1])), (int(xyxy[2]), int(xyxy[3]))
                        print("左上点的坐标为:(" + str(c1[0]) + "," + str(c1[1]) + "),右下点的坐标为(" + str(c2[0]) + "," + str(c2[1]) + ")")
                        return [c1,c2]
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
parser.add_argument('--source', type=str, default='data/images', help='source') # file/folder, 0 for webcam
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
opt = parser.parse_args()

check_requirements(exclude=('pycocotools', 'thop'))

opt.source='data/images/1/'
result=detect()
print('最终检测结果:',result);

总结

到此这篇关于如何使用yolov5输出检测到的目标坐标信息的文章就介绍到这了,更多相关yolov5输出目标坐标内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python3搭建http服务器的实现代码

    Python3搭建http服务器的实现代码

    这篇文章主要介绍了Python3搭建http服务器的实现代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-02-02
  • Python利用shutil实现拷贝文件功能

    Python利用shutil实现拷贝文件功能

    shutil 是一个 Python 内置模块,该模块对文件的复制、删除和压缩等操作都提供了非常方便的支持。本文将利用shutil实现拷贝文件功能,需要的可以参考一下
    2022-07-07
  • 解决Python Matplotlib绘图数据点位置错乱问题

    解决Python Matplotlib绘图数据点位置错乱问题

    这篇文章主要介绍了解决Python Matplotlib绘图数据点位置错乱问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-05-05
  • 实践Python的爬虫框架Scrapy来抓取豆瓣电影TOP250

    实践Python的爬虫框架Scrapy来抓取豆瓣电影TOP250

    这篇文章主要介绍了实践Python的爬虫框架Scrapy来抓取豆瓣电影TOP250的过程,文中的环境基于Windows操作系统,需要的朋友可以参考下
    2016-01-01
  • 在Django中限制已登录用户的访问的方法

    在Django中限制已登录用户的访问的方法

    这篇文章主要介绍了在Django中限制已登录用户的访问的方法,Django是最具人气的Python开发框架,需要的朋友可以参考下
    2015-07-07
  • 从numpy数组中取出满足条件的元素示例

    从numpy数组中取出满足条件的元素示例

    今天小编就为大家分享一篇从numpy数组中取出满足条件的元素示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-11-11
  • python格式化输出实例(居中、靠右及靠左对齐)

    python格式化输出实例(居中、靠右及靠左对齐)

    所谓格式化输出就是数据按照某种特殊的格式和要求进行输出,下面这篇文章主要给大家介绍了关于python格式化输出(居中、靠右及靠左对齐)的相关资料,文中介绍了format方式、其他扩展写法以及'%'方式,需要的朋友可以参考下
    2022-04-04
  • python实现canny边缘检测

    python实现canny边缘检测

    本文主要讲解了canny边缘检测原理:计算梯度幅值和方向、根据角度对幅值进行非极大值抑制、用双阈值算法检测和连接边缘以及python 实现
    2020-09-09
  • Python中logging日志的四个等级和使用

    Python中logging日志的四个等级和使用

    这篇文章主要介绍了Python中logging日志的四个等级和使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-11-11
  • 盘点20个Python数据科学库神器打造数据魔法世界

    盘点20个Python数据科学库神器打造数据魔法世界

    数据科学家和分析师常常使用 Python 来处理数据、进行分析和可视化,Python生态系统中有许多库,但有一些库是数据科学家日常工作中必不可少的,本文将深入介绍20个重要的Python 库,包括示例代码和用例
    2024-01-01

最新评论