matplotlib绘制折线图的基本配置(万能模板案例)

 更新时间:2022年04月13日 10:45:20   作者:王小王-123  
折线图可以很方便的看出数据的对比,本文主要介绍了matplotlib绘制折线图的基本配置(万能模板案例),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

前面我们已经构造了一种图形可视化的模板了,下面我们直接使用这个模板进行增添和修改,进一步的改善图形的外观。

import matplotlib.pyplot as plt
 
# 画布
plt.figure(figsize=(9,3),   # (宽度 , 高度) 单位inch 
           dpi=100,         #  清晰度 dot-per-inch
           facecolor='#CCCCCC', # 画布底色
           edgecolor='black',linewidth=0.2,frameon=True, # 画布边框
           #frameon=False  # 不要画布边框
          )         
 
# ax = plt.gca()
# ax.plot()
 
plt.plot()
plt.show()

设置好基本的图形之后,我们就可以向上面添加一些数据了

(图例放置位置)

"""legend( handles=(line1, line2, line3),
           labels=('label1', 'label2', 'label3'),
           'upper right')
    The *loc* location codes are::
          'best' : 0,          (currently not supported for figure legends)
          'upper right'  : 1,
          'upper left'   : 2,
          'lower left'   : 3,
          'lower right'  : 4,
          'right'        : 5,
          'center left'  : 6,
          'center right' : 7,
          'lower center' : 8,
          'upper center' : 9,
          'center'       : 10,"""

折线图案例

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
 
# 画布
plt.figure(figsize=(15,5),   # (宽度 , 高度) 单位inch 
           dpi=100,         #  清晰度 dot-per-inch
           facecolor='#CCCCCC', # 画布底色
           edgecolor='black',linewidth=0.2,frameon=True, # 画布边框
           #frameon=False  # 不要画布边框
          )         
 
 
# 数据
x = np.linspace(0, 2 * np.pi, 50)  
y1 = np.sin(x)
y2 = np.cos(x)
df = pd.DataFrame([x,y1,y2]).T
df.columns = ['x','sin(x)','cos(x)']
 
# 图形
plt.plot(df['x'],df['sin(x)'],label='sin(x)')
plt.plot(df['x'],df['cos(x)'],label='cos(x)')
 
# 图例
plt.legend(loc='lower right')  # 不带参数的时候,使用图形的label属性
# plt.legend(labels=['sin','cos'])
 
# 标题
#plt.title("sin(x) and cos(x)",loc='center',y=0.85)
 
# 字体字典
font_dict = {'fontsize': 12, 'fontweight': 'bold', 'color': 'green'}
plt.title("sin(x) and cos(x)",loc='center',y=0.9, fontdict=font_dict)

查看全局参数

# matplotlib.pyplot的全局参数
plt.rcParams
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
 
# 设置中文字体
plt.rcParams['axes.unicode_minus'] = False    # 不使用中文减号
plt.rcParams['font.sans-serif'] = 'FangSong'  # 设置字体为仿宋(FangSong)
# 画布
plt.figure(figsize=(15,5),   # (宽度 , 高度) 单位inch 
           dpi=120,         #  清晰度 dot-per-inch
           facecolor='#CCCCCC', # 画布底色
           edgecolor='black',linewidth=0.2,frameon=True, # 画布边框
           #frameon=False  # 不要画布边框
          )         
 
 
# 数据
x = np.linspace(0, 2 * np.pi, 50)  
y1 = np.sin(x)
y2 = np.cos(x)
df = pd.DataFrame([x,y1,y2]).T
df.columns = ['x','sin(x)','cos(x)']
 
# 图形
plt.plot(df['x'],df['sin(x)'],label='sin(x)')
plt.plot(df['x'],df['cos(x)'],label='cos(x)')
 
# 图例
plt.legend()
 
# 标题
#plt.title("sin(x) and cos(x)",loc='center',y=0.85)
 
# 字体字典
font_dict = {'fontsize': 10, 'fontweight': 'bold', 'color': 'grey'}
 
# 中文标题, 默认的字体不支持中文
plt.title("三角函数:正弦和余弦",loc='center',y=0.9, fontdict=font_dict)

 改变字体

# 字体字典
font_dict = {'fontsize': 10, 'fontweight': 'bold', 'color': 'grey'}
 
# 中文标题, 默认的字体不支持中文
plt.title("三角函数:正弦和余弦",loc='center',y=0.9, fontdict=font_dict)

添加X轴和Y轴

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
 
# 画布
plt.figure(figsize=(15,5),   # (宽度 , 高度) 单位inch 
           dpi=120,         #  清晰度 dot-per-inch
           facecolor='#CCCCCC', # 画布底色
           edgecolor='black',linewidth=0.2,frameon=True, # 画布边框
           #frameon=False  # 不要画布边框
          )         
 
 
# 数据
x = np.linspace(0, 2 * np.pi, 50)  # 
y1 = np.sin(x)
y2 = np.cos(x)
df = pd.DataFrame([x,y1,y2]).T
df.columns = ['x','sin(x)','cos(x)']
 
 
 
 
 
# 标题
#plt.title("sin(x) and cos(x)",loc='center',y=0.85)
 
# 字体字典
font_dict = {'fontsize': 10, 'fontweight': 'bold', 'color': 'black','fontfamily':'KaiTi'}
 
# 设置全局中文字体
plt.rcParams['font.sans-serif'] = 'KaiTi' # 设置全局字体为中文 楷体
plt.rcParams['axes.unicode_minus'] = False # 不使用中文减号
 
# 常用中文字体
# 宋体 SimSun
# 黑体 SimHei
# 微软雅黑 Microsoft YaHei
# 微软正黑体 Microsoft JhengHei
# 新宋体 NSimSun
# 新细明体 PMingLiU
# 细明体 MingLiU
# 标楷体 DFKai-SB
# 仿宋 FangSong
# 楷体 KaiTi
 
# 中文标题, 默认的字体不支持中文
plt.title("三角函数:正弦和余弦",loc='center',y=1, fontdict=font_dict)
 
# Axes 坐标系设置
ax = plt.gca()  # 获取当前坐标系
ax.set_facecolor('#FEFEFE')  # 设置坐标系参数。。。。
#plt.xlabel()  =>  ax.set_xlabel()
# ax.set_facecolor('#EE2211')
# ax.set_alpha(0.15)
# plt.title() => ax.set_title("AX TITLE")  
 
 
# X轴标签
plt.xlabel("X轴")  # loc: 左中右 left-center-right
# Y轴标签
plt.ylabel("Y轴")   # loc: 上中下 top-center-bottom
 
# X轴范围
plt.xlim(0,np.pi)  # 只显示X在0-Pi之间的部分
# Y轴范围
plt.ylim([0,1.1])  # 只显示Y在0-1之间的部分
 
# X轴刻度
xticks = np.array([0,1/4,2/4,3/4,1]) * np.pi      # X 轴上刻度的值
labels = ["0",'1/4 Π','1/2 Π','3/4 Π', 'Π']  # X 轴上刻度标签
plt.xticks(xticks, labels)   # 如果没有传入labels,直接使用ticks作为labels
# Y轴刻度
yticks = np.arange(0.0,1.2,0.2)     # X 轴上刻度的值
plt.yticks(yticks)   # 如果没有传入labels,直接使用ticks作为labels
 
# 根据刻度画网格线
#plt.grid()
plt.grid(axis='x')  # axis: both, x, y 在哪个轴上画格子
 
# 图形
plt.plot(df['x'],df['sin(x)'],label='sin(x)')
plt.plot(df['x'],df['cos(x)'],label='cos(x)')
 
# 图例
plt.legend()
# plt.legend(labels=['sin','cos'])

 折线图绘制万能模板

# 处理数据
df = pd.read_csv(r'unemployment-rate-1948-2010.csv',usecols=['Year','Period','Value'])
df.replace('^M','-',regex=True, inplace=True)
df['year_month'] = df['Year'].astype('U') + df['Period']
 
# 设置画布和参数
plt.figure(figsize=(16,4), dpi=130, facecolor='white', edgecolor='black', frameon=True)# 画布底色
 
 
# 添加数据
plt.plot(df['year_month'], df['Value'],'c')#改变颜色和线条
 
'''
一般不需要改动下面的,只需要设置一些固定常量
'''
 
# 构造X轴标签,一般不用设置
xticks = [df['year_month'][i] for i in np.arange(0,df['year_month'].size,15)]#X轴的显示
#X轴设置倾斜度,可以解决标签过长的问题,大小可以设置默认
plt.xticks(xticks,rotation=100,size=10)
 
# 设置图形上的各类主题值
plt.suptitle('主标题:unemployment-rate-1948-2010',size=17,y=1.0)
plt.title("绘制日期:2022年   昵称:王小王-123", loc='right',size=15,y=1)
 
plt.title("主页:https://blog.csdn.net/weixin_47723732", loc='left',size=12,y=1)
 
# 设置坐标轴上的字体标签
font_dict = {'fontsize': 15, 'fontweight': 'bold', 'color': 'black','fontfamily':'KaiTi'}
plt.xlabel('年月',font_dict)
plt.ylabel('失业率',font_dict)

到此这篇关于matplotlib绘制折线图的基本配置(万能模板案例)的文章就介绍到这了,更多相关matplotlib绘制折线图内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python 利用pandas将arff文件转csv文件的方法

    python 利用pandas将arff文件转csv文件的方法

    今天小编就为大家分享一篇python 利用pandas将arff文件转csv文件的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-02-02
  • Python list sort方法的具体使用

    Python list sort方法的具体使用

    list.sort()方法是Python的列表方法,用于对原列表进行排序。本文详细的介绍了list.sort的具体使用,具有一定的参考价值,感兴趣的可以了解一下
    2021-12-12
  • Python 迭代器与生成器实例详解

    Python 迭代器与生成器实例详解

    这篇文章主要介绍了Python 迭代器与生成器实例详解的相关资料,需要的朋友可以参考下
    2017-05-05
  • 使用Matlab将矩阵保存到csv和txt文件

    使用Matlab将矩阵保存到csv和txt文件

    这篇文章主要介绍了使用Matlab将矩阵保存到csv和txt文件,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-12-12
  • 忆童年!用Python实现愤怒的小鸟游戏

    忆童年!用Python实现愤怒的小鸟游戏

    好久都没玩过愤怒的小鸟了,今天咱自己做一个玩玩,文中有非常详细的代码示例,对想玩的小伙伴们很有用哦,需要的朋友可以参考下
    2021-06-06
  • Python中实现对list做减法操作介绍

    Python中实现对list做减法操作介绍

    这篇文章主要介绍了Python中实现对list做减法操作介绍,需要的朋友可以参考下
    2015-01-01
  • Python实现的一个找零钱的小程序代码分享

    Python实现的一个找零钱的小程序代码分享

    这篇文章主要介绍了Python实现的一个找零钱的小程序代码分享,本文中可以区分出应该找零多少元、多少角,需要的朋友可以参考下
    2014-08-08
  • 详解Python发送email的三种方式

    详解Python发送email的三种方式

    这篇文章主要介绍了详解Python发送email的三种方式,Python发送email的三种方式,分别为使用登录邮件服务器、使用smtp服务、调用sendmail命令来发送三种方法,非常具有实用价值,需要的朋友可以参考下
    2018-10-10
  • Python强大的语法支持你知道吗

    Python强大的语法支持你知道吗

    这篇文章主要为大家介绍了Python强大的语法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助
    2021-11-11
  • python实现基于信息增益的决策树归纳

    python实现基于信息增益的决策树归纳

    这篇文章主要为大家详细介绍了Python实现基于信息增益的决策树归纳,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-12-12

最新评论