正则化DropPath/drop_path用法示例(Python实现)

 更新时间:2022年04月14日 08:28:49   作者:风巽·剑染春水  
DropPath 类似于Dropout,不同的是 Drop将深度学习模型中的多分支结构随机"失效",而Dropout是对神经元随机"失效"这篇文章主要给大家介绍了关于正则化DropPath/drop_path用法的相关资料,需要的朋友可以参考下

DropPath/drop_path 是一种正则化手段,其效果是将深度学习模型中的多分支结构随机”删除“,python中实现如下所示:

def drop_path(x, drop_prob: float = 0., training: bool = False):
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Module):
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)

调用如下:

self.drop_path = DropPath(drop_prob) if drop_prob > 0. else nn.Identity()

x = x + self.drop_path(self.token_mixer(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))

看起来似乎有点迷茫,这怎么就随机删除了分支呢

实验如下:

import torch

drop_prob = 0.2
keep_prob = 1 - drop_prob
x = torch.randn(4, 3, 2, 2)
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_()
output = x.div(keep_prob) * random_tensor

输出:

x.size():[4,3,2,2]
x:
tensor([[[[ 1.3833, -0.3703],
          [-0.4608,  0.6955]],
         [[ 0.8306,  0.6882],
          [ 2.2375,  1.6158]],
         [[-0.7108,  1.0498],
          [ 0.6783,  1.5673]]],

        [[[-0.0258, -1.7539],
          [-2.0789, -0.9648]],
         [[ 0.8598,  0.9351],
          [-0.3405,  0.0070]],
         [[ 0.3069, -1.5878],
          [-1.1333, -0.5932]]],

        [[[ 1.0379,  0.6277],
          [ 0.0153, -0.4764]],
         [[ 1.0115, -0.0271],
          [ 1.6610, -0.2410]],
         [[ 0.0681, -2.0821],
          [ 0.6137,  0.1157]]],

        [[[ 0.5350, -2.8424],
          [ 0.6648, -1.6652]],
         [[ 0.0122,  0.3389],
          [-1.1071, -0.6179]],
         [[-0.1843, -1.3026],
          [-0.3247,  0.3710]]]])

random_tensor.size():[4, 1, 1, 1]
random_tensor:
tensor([[[[0.]]],
        [[[1.]]],
        [[[1.]]],
        [[[1.]]]])
output.size():[4,3,2,2]
output:
tensor([[[[ 0.0000, -0.0000],
          [-0.0000,  0.0000]],
         [[ 0.0000,  0.0000],
          [ 0.0000,  0.0000]],
         [[-0.0000,  0.0000],
          [ 0.0000,  0.0000]]],

        [[[-0.0322, -2.1924],
          [-2.5986, -1.2060]],
         [[ 1.0748,  1.1689],
          [-0.4256,  0.0088]],
         [[ 0.3836, -1.9848],
          [-1.4166, -0.7415]]],

        [[[ 1.2974,  0.7846],
          [ 0.0192, -0.5955]],
         [[ 1.2644, -0.0339],
          [ 2.0762, -0.3012]],
         [[ 0.0851, -2.6027],
          [ 0.7671,  0.1446]]],

        [[[ 0.6687, -3.5530],
          [ 0.8310, -2.0815]],
         [[ 0.0152,  0.4236],
          [-1.3839, -0.7723]],
         [[-0.2303, -1.6282],
          [-0.4059,  0.4638]]]])

random_tensor作为是否保留分支的直接置0项,若drop_path的概率设为0.2,random_tensor中的数有0.2的概率为0,而output中被保留概率为0.8。

结合drop_path的调用,若x为输入的张量,其通道为[B,C,H,W],那么drop_path的含义为在一个Batch_size中,随机有drop_prob的样本,不经过主干,而直接由分支进行恒等映射。

总结

到此这篇关于正则化DropPath/drop_path用法(Python实现)的文章就介绍到这了,更多相关正则化DropPath/drop_path内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 在Python中构建增广矩阵的实现方法

    在Python中构建增广矩阵的实现方法

    今天小编就为大家分享一篇在Python中构建增广矩阵的实现方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • Python脚本检测笑脸漏洞的问题复现

    Python脚本检测笑脸漏洞的问题复现

    Python脚本有效检测vsftpd2.3.4版本中的笑脸漏洞,该漏洞存在于6200端口,允许任何人连接,输入带有特定表情符号的用户名和任意密码即可触发,本文介绍了环境搭建、漏洞扫描和利用过程,通过nc命令演示了漏洞复现步骤
    2024-10-10
  • 使用python3实现操作串口详解

    使用python3实现操作串口详解

    本文给大家介绍的是在python中通过引用serial模块包,来操作串口的方法的示例,有需要的小伙伴可以参考下
    2019-01-01
  • python将txt文档每行内容循环插入数据库的方法

    python将txt文档每行内容循环插入数据库的方法

    今天小编就为大家分享一篇python将txt文档每行内容循环插入数据库的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-12-12
  • Python可视化程序调用流程解析

    Python可视化程序调用流程解析

    这篇文章主要为大家介绍了可视化Python程序调用流程解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-08-08
  • Django import export实现数据库导入导出方式

    Django import export实现数据库导入导出方式

    这篇文章主要介绍了Django import export实现数据库导入导出方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-04-04
  • pandas数据合并之pd.concat()用法详解

    pandas数据合并之pd.concat()用法详解

    本文主要介绍了pandas数据合并之pd.concat()用法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-06-06
  • python 执行函数的九种方法

    python 执行函数的九种方法

    这篇文章主要介绍了python 执行函数的九种方法,帮助大家更好的理解和学习使用python,感兴趣的朋友可以了解下
    2021-03-03
  • Python基本语法经典教程

    Python基本语法经典教程

    这篇文章主要介绍了Python基本语法,较为详细的分析了Python基本语法所涉及的流程控制语句,表达式,函数,对象,类型,数学运算等概念与使用技巧,需要的朋友可以参考下
    2016-03-03
  • Python图像锐化与边缘检测之Scharr,Canny,LOG算子详解

    Python图像锐化与边缘检测之Scharr,Canny,LOG算子详解

    图像锐化和边缘检测主要包括一阶微分锐化和二阶微分锐化,本文主要讲解常见的图像锐化和边缘检测方法,即Scharr算子、Canny算子和LOG算子,需要的可以参考一下
    2022-12-12

最新评论