正则化DropPath/drop_path用法示例(Python实现)

 更新时间:2022年04月14日 08:28:49   作者:风巽·剑染春水  
DropPath 类似于Dropout,不同的是 Drop将深度学习模型中的多分支结构随机"失效",而Dropout是对神经元随机"失效"这篇文章主要给大家介绍了关于正则化DropPath/drop_path用法的相关资料,需要的朋友可以参考下

DropPath/drop_path 是一种正则化手段,其效果是将深度学习模型中的多分支结构随机”删除“,python中实现如下所示:

def drop_path(x, drop_prob: float = 0., training: bool = False):
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Module):
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)

调用如下:

self.drop_path = DropPath(drop_prob) if drop_prob > 0. else nn.Identity()

x = x + self.drop_path(self.token_mixer(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))

看起来似乎有点迷茫,这怎么就随机删除了分支呢

实验如下:

import torch

drop_prob = 0.2
keep_prob = 1 - drop_prob
x = torch.randn(4, 3, 2, 2)
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_()
output = x.div(keep_prob) * random_tensor

输出:

x.size():[4,3,2,2]
x:
tensor([[[[ 1.3833, -0.3703],
          [-0.4608,  0.6955]],
         [[ 0.8306,  0.6882],
          [ 2.2375,  1.6158]],
         [[-0.7108,  1.0498],
          [ 0.6783,  1.5673]]],

        [[[-0.0258, -1.7539],
          [-2.0789, -0.9648]],
         [[ 0.8598,  0.9351],
          [-0.3405,  0.0070]],
         [[ 0.3069, -1.5878],
          [-1.1333, -0.5932]]],

        [[[ 1.0379,  0.6277],
          [ 0.0153, -0.4764]],
         [[ 1.0115, -0.0271],
          [ 1.6610, -0.2410]],
         [[ 0.0681, -2.0821],
          [ 0.6137,  0.1157]]],

        [[[ 0.5350, -2.8424],
          [ 0.6648, -1.6652]],
         [[ 0.0122,  0.3389],
          [-1.1071, -0.6179]],
         [[-0.1843, -1.3026],
          [-0.3247,  0.3710]]]])

random_tensor.size():[4, 1, 1, 1]
random_tensor:
tensor([[[[0.]]],
        [[[1.]]],
        [[[1.]]],
        [[[1.]]]])
output.size():[4,3,2,2]
output:
tensor([[[[ 0.0000, -0.0000],
          [-0.0000,  0.0000]],
         [[ 0.0000,  0.0000],
          [ 0.0000,  0.0000]],
         [[-0.0000,  0.0000],
          [ 0.0000,  0.0000]]],

        [[[-0.0322, -2.1924],
          [-2.5986, -1.2060]],
         [[ 1.0748,  1.1689],
          [-0.4256,  0.0088]],
         [[ 0.3836, -1.9848],
          [-1.4166, -0.7415]]],

        [[[ 1.2974,  0.7846],
          [ 0.0192, -0.5955]],
         [[ 1.2644, -0.0339],
          [ 2.0762, -0.3012]],
         [[ 0.0851, -2.6027],
          [ 0.7671,  0.1446]]],

        [[[ 0.6687, -3.5530],
          [ 0.8310, -2.0815]],
         [[ 0.0152,  0.4236],
          [-1.3839, -0.7723]],
         [[-0.2303, -1.6282],
          [-0.4059,  0.4638]]]])

random_tensor作为是否保留分支的直接置0项,若drop_path的概率设为0.2,random_tensor中的数有0.2的概率为0,而output中被保留概率为0.8。

结合drop_path的调用,若x为输入的张量,其通道为[B,C,H,W],那么drop_path的含义为在一个Batch_size中,随机有drop_prob的样本,不经过主干,而直接由分支进行恒等映射。

总结

到此这篇关于正则化DropPath/drop_path用法(Python实现)的文章就介绍到这了,更多相关正则化DropPath/drop_path内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python 测试框架unittest和pytest的优劣

    Python 测试框架unittest和pytest的优劣

    这篇文章主要介绍了Python 测试框架unittest和pytest的优劣,帮助大家更好的进行python程序的测试,感兴趣的朋友可以了解下
    2020-09-09
  • Python使用requests及BeautifulSoup构建爬虫实例代码

    Python使用requests及BeautifulSoup构建爬虫实例代码

    这篇文章主要介绍了Python使用requests及BeautifulSoup构建爬虫,介绍了具体操作步骤和实例代码等相关内容,小编觉得还是挺不错的,这里分享给大家,需要的朋友可以参考下
    2018-01-01
  • Python实现创建词云的示例详解

    Python实现创建词云的示例详解

    词云一般是根据输入的大量词语生成的,如果某个词语出现的次数越多,那么相应的大小就会越大,本文将利用wordcloud模块实现词云生成,需要的可以参考下
    2023-10-10
  • python项目导入open3d后报错ImportError:DLL load failed:找不到指定的模块问题

    python项目导入open3d后报错ImportError:DLL load failed:找不到

    这篇文章主要介绍了python项目导入open3d后报错ImportError:DLL load failed:找不到指定的模块问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-08-08
  • Python中random模块常用方法的使用教程

    Python中random模块常用方法的使用教程

    这篇文章主要给大家介绍了关于Python中random模块常用方法的使用教程,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-10-10
  • python 初始化一个定长的数组实例

    python 初始化一个定长的数组实例

    今天小编就为大家分享一篇python 初始化一个定长的数组实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • Python中import语句用法案例讲解

    Python中import语句用法案例讲解

    在实际应用中,有时程序所要实现功能比较复杂,代码量也很大,若把所有的代码都存储在一个文件中,则不利于代码的复用和维护,这篇文章主要介绍了Python中import语句用法详解,需要的朋友可以参考下
    2022-12-12
  • python简介及下载安装

    python简介及下载安装

    这篇文章介绍了python以及下载安装的方法,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-06-06
  • 基于python分享一款地理数据可视化神器keplergl

    基于python分享一款地理数据可视化神器keplergl

    这篇文章主要介绍了分享一款地理数据可视化神器keplergl,keplergl是由Uber开源的一款地理数据可视化工具,通过keplergl我们可以在Jupyter notebook中使用,下文分享需要的小伙伴可以参考一下
    2022-02-02
  • Python实现在PDF中添加数字签名

    Python实现在PDF中添加数字签名

    无论是商业文件、法律文件还是个人文件,都可能需要证明其来源的真实性和完整性,PDF数字签名就是解决这些问题的关键工具,下面我们来看看如何使用 Python 为PDF文档添加数字签名吧
    2025-01-01

最新评论