Python VTK映射三维模型表面距离

 更新时间:2022年04月18日 13:07:41   作者:派大大大星  
这篇文章主要介绍了Python VTK映射三维模型表面距离,通过如何使用VTK读取图片计算两个三维模型(stl)的表面距离,并将其距离值映射到模型上展开主题,需要的朋友可以参考一下

数据准备: 需要准备两个stl文件、Python需要安装vtk库

步骤一:数据读取 首先通过vtk.vtkSTLReader() 定义stl文件读取接口,再通过reader1.GetOutput() 就可以获得stl在vtk工作流的数据。

步骤二:去除重复点 通过vtk.vtkCleanPolyData() 可以去除模型中的重复点

步骤三:计算距离 使用 vtk.vtkDistancePolyDataFilter() ,使用上一步中过滤掉重复点后的数据作为输入。如distanceFilter.SetInputConnection(1, clean1.GetOutputPort()), 其中第一个参数就是输入数据的标号,从0开始计数;第二个参数就是输入的数据。我们将vtkDistancePolyDataFilter的输出到mapper就完成距离映射了。

步骤四:颜色配置 lut = vtk.vtkLookupTable() 相当于一个调色盘函数,通过对其参数改变可以,调整最终映射的颜色范围。 scalarBar = vtk.vtkScalarBarActor() 就是颜色条,按照前面的调色盘的结果将距离数值映射成颜色。

import vtk

input1 = vtk.vtkPolyData()
reader1 = vtk.vtkSTLReader()
reader1.SetFileName('model1.stl')
reader1.Update()
input1 = reader1.GetOutput()  # 读取模型A

input2 = vtk.vtkPolyData()
reader2 = vtk.vtkSTLReader()
reader2.SetFileName('model2.stl')
reader2.Update()
input2 = reader2.GetOutput()  # 读取模型B


# 数据合并,可以合并显示两个模型
clean1 = vtk.vtkCleanPolyData()
clean1.SetInputData(input1)

clean2 = vtk.vtkCleanPolyData()
clean2.SetInputData(input2)

distanceFilter = vtk.vtkDistancePolyDataFilter()

distanceFilter.SetInputConnection(1, clean1.GetOutputPort())
distanceFilter.SetInputConnection(0, clean2.GetOutputPort())
distanceFilter.SignedDistanceOff()
distanceFilter.Update()  # 计算距离
distanceFilter.GetOutputPort()
mapper = vtk.vtkPolyDataMapper()  # 配置mapper
mapper.SetInputConnection(distanceFilter.GetOutputPort())
mapper.SetScalarRange(  # 设置颜色映射范围
    distanceFilter.GetOutput().GetPointData().GetScalars().GetRange()[0],
    distanceFilter.GetOutput().GetPointData().GetScalars().GetRange()[1])
actor = vtk.vtkActor()
actor.SetMapper(mapper)
actor1 = vtk.vtkActor()
actor1.SetMapper(mapper)
lut = vtk.vtkLookupTable()
lut.SetHueRange(0.2, 0.7)  # 映射的颜色变换参数(自己调颜色)
# lut.SetAlphaRange(1.0, 1.0)
# lut.SetValueRange(1.0, 1.0)
# lut.SetSaturationRange(1.0, 1.0)
# lut.SetNumberOfTableValues(256)
mapper.SetLookupTable(lut)
mapper2 = vtk.vtkPolyDataMapper()
mapper2.SetInputData((distanceFilter.GetSecondDistanceOutput()))
mapper2.SetScalarRange(  # 设置颜色映射范围
    distanceFilter.GetSecondDistanceOutput().GetPointData().GetScalars().GetRange()[0],
    distanceFilter.GetSecondDistanceOutput().GetPointData().GetScalars().GetRange()[1])


actor2 = vtk.vtkActor()
actor2.SetMapper(mapper2)

scalarBar = vtk.vtkScalarBarActor()  # 设置color_bar
scalarBar.SetLookupTable(mapper.GetLookupTable())
scalarBar.SetTitle("SD(mm)")
scalarBar.SetNumberOfLabels(5)  # 设置要显示的刻度标签数。自己设定色带的位置
scalarBar.SetMaximumNumberOfColors(10)
# scalarBar.GetPositionCoordinate().SetCoordinateSystemToNormalizedViewport()
# scalarBar.GetPositionCoordinate().SetValue(0.01, 0.49)  # 参数越小越靠左,第二个参数越大越往上
# scalarBar.SetWidth(0.16)
# scalarBar.SetHeight(0.5)
# scalarBar.SetTextPositionToPrecedeScalarBar()  # 标题和刻度标记是否应在标量栏之前(文字会出现在条形左边)
# # 设置标题和条形之间的边距
# scalarBar.SetVerticalTitleSeparation(10)
# # 设置标题颜色
scalarBar.DrawTickLabelsOn()
scalarBar.GetTitleTextProperty().SetColor(0, 0, 0)
scalarBar.GetLabelTextProperty().SetColor(0, 0, 0)
arender = vtk.vtkRenderer()
arender.SetViewport(0, 0.0, 1, 1.0)
renWin = vtk.vtkRenderWindow()
renWin.AddRenderer(arender)
iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(renWin)
style = vtk.vtkInteractorStyleTrackballActor()
iren.SetInteractorStyle(style)
aCamera = vtk.vtkCamera()
aCamera.SetViewUp(0, 0, -1)
aCamera.SetPosition(0, -1, 0)
aCamera.ComputeViewPlaneNormal()
aCamera.Azimuth(30.0)
aCamera.Elevation(30.0)
aCamera.Dolly(1.5)

arender.AddActor(actor)
# arender.AddActor(actor1)
arender.SetActiveCamera(aCamera)
arender.ResetCamera()
arender.SetBackground(1, 1, 1)
arender.ResetCameraClippingRange()
arender.AddActor2D(scalarBar)

renWin.Render()
iren.Initialize()
iren.Start()

结果示例:

1636355834(1).jpg

到此这篇关于Python VTK映射三维模型表面距离的文章就介绍到这了,更多相关Python VTK 映射内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 详解Flask开发技巧之异常处理

    详解Flask开发技巧之异常处理

    Flask是一个微型的Python开发的Web框架,基于Werkzeug WSGI工具箱和Jinja2 模板引擎。Flask使用BSD授权。Flask也被称为“microframework”,因为它使用简单的核心,用extension增加其他功能。本文主要介绍了它的异常处理机制
    2021-06-06
  • Django连接数据库并实现读写分离过程解析

    Django连接数据库并实现读写分离过程解析

    这篇文章主要介绍了Django连接数据库并实现读写分离过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-11-11
  • Python添加时间轴以实现动态绘图详解

    Python添加时间轴以实现动态绘图详解

    这篇文章主要为大家详细介绍了Python如何添加时间轴以实现动态绘图,文中的示例代码讲解详细,具有一定的学习价值,感兴趣的小伙伴可以参考一下
    2023-09-09
  • 梅尔倒谱系数(MFCC)实现

    梅尔倒谱系数(MFCC)实现

    这篇文章主要为大家详细介绍了梅尔倒谱系数(MFCC)实现,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-06-06
  • python OpenCV图像金字塔

    python OpenCV图像金字塔

    这篇文章主要介绍了python OpenCV图像金字塔,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-06-06
  • python获取指定路径下所有指定后缀文件的方法

    python获取指定路径下所有指定后缀文件的方法

    这篇文章主要介绍了python获取指定路径下所有指定后缀文件的方法,涉及Python针对文件与目录操作的相关技巧,需要的朋友可以参考下
    2015-05-05
  • python通过伪装头部数据抵抗反爬虫的实例

    python通过伪装头部数据抵抗反爬虫的实例

    下面小编就为大家分享一篇python通过伪装头部数据抵抗反爬虫的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-05-05
  • Python类属性的延迟计算

    Python类属性的延迟计算

    这篇文章主要为大家详细介绍了Python类属性的延迟计算,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2016-10-10
  • python 通过麦克风录音 生成wav文件的方法

    python 通过麦克风录音 生成wav文件的方法

    今天小编就为大家分享一篇python 通过麦克风录音 生成wav文件的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • 将python安装信息加入注册表的示例

    将python安装信息加入注册表的示例

    今天小编就为大家分享一篇将python安装信息加入注册表的示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-11-11

最新评论