使用python matplotlib画折线图实例代码

 更新时间:2022年04月26日 10:21:07   作者:消灭BUG鸭  
Matplotlib是一个Python工具箱,用于科学计算的数据可视化,下面这篇文章主要给大家介绍了关于如何使用python matplotlib画折线图的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下

matplotlib简介

matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地行制图。而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中。

它的文档相当完备,并且Gallery页面中有上百幅缩略图,打开之后都有源程序。因此如果你需要绘制某种类型的图,只需要在这个页面中浏览/复制/粘贴一下,基本上都能搞定。

在Linux下比较著名的数据图工具还有gnuplot,这个是免费的,Python有一个包可以调用gnuplot,但是语法比较不习惯,而且画图质量不高。

而 Matplotlib则比较强:Matlab的语法、python语言、latex的画图质量(还可以使用内嵌的latex引擎绘制的数学公式)。

1、画折线图【一条示例】

import matplotlib.pyplot as plt
import numpy as np

x_axis_data = [1,2,3,4,5,6,7] #x
y_axis_data = [68,69,79,71,80,70,66] #y

plt.plot(x_axis_data, y_axis_data, 'b*--', alpha=0.5, linewidth=1, label='acc')#'bo-'表示蓝色实线,数据点实心原点标注
## plot中参数的含义分别是横轴值,纵轴值,线的形状('s'方块,'o'实心圆点,'*'五角星   ...,颜色,透明度,线的宽度和标签 ,

plt.legend()  #显示上面的label
plt.xlabel('time') #x_label
plt.ylabel('number')#y_label
 
#plt.ylim(-1,1)#仅设置y轴坐标范围
plt.show()

运行,得到:

2、画折线图带数据标签

在画线代码之前加入这句代码:

for x, y in zip(x_axis_data, y_axis_data):
    plt.text(x, y+0.3, '%.00f' % y, ha='center', va='bottom', fontsize=7.5)#y_axis_data1加标签数据

总体代码如下:

import matplotlib.pyplot as plt
import numpy as np

x_axis_data = [1,2,3,4,5,6,7] #x
y_axis_data = [68,69,79,71,80,70,66] #y

for x, y in zip(x_axis_data, y_axis_data):
    plt.text(x, y+0.3, '%.00f' % y, ha='center', va='bottom', fontsize=7.5)#y_axis_data1加标签数据
    
plt.plot(x_axis_data, y_axis_data, 'b*--', alpha=0.5, linewidth=1, label='acc')#'bo-'表示蓝色实线,数据点实心原点标注
## plot中参数的含义分别是横轴值,纵轴值,线的形状('s'方块,'o'实心圆点,'*'五角星   ...,颜色,透明度,线的宽度和标签 ,

plt.legend()  #显示上面的label
plt.xlabel('time') #x_label
plt.ylabel('number')#y_label
 
#plt.ylim(-1,1)#仅设置y轴坐标范围
plt.show()

3、画多条折线图:

import matplotlib.pyplot as plt
import numpy as np
 
#epoch,acc,loss,val_acc,val_loss
x_axis_data = [1,2,3,4,5,6,7]
y_axis_data1 = [68.72,69.17,69.26,69.63,69.35,70.3,66.8]
y_axis_data2 = [71,73,52,66,74,82,71]
y_axis_data3 = [82,83,82,76,84,92,81]

        
#画图 
plt.plot(x_axis_data, y_axis_data1, 'b*--', alpha=0.5, linewidth=1, label='acc')#'
plt.plot(x_axis_data, y_axis_data2, 'rs--', alpha=0.5, linewidth=1, label='acc')
plt.plot(x_axis_data, y_axis_data3, 'go--', alpha=0.5, linewidth=1, label='acc')

 
plt.legend()  #显示上面的label
plt.xlabel('time')
plt.ylabel('number')#accuracy
 
#plt.ylim(-1,1)#仅设置y轴坐标范围
plt.show()

运行,得到:

4、画多条折线图分别带数据标签:

import matplotlib.pyplot as plt
import numpy as np
 
#epoch,acc,loss,val_acc,val_loss
x_axis_data = [1,2,3,4,5,6,7]
y_axis_data1 = [68.72,69.17,69.26,69.63,69.35,70.3,66.8]
y_axis_data2 = [71,73,52,66,74,82,71]
y_axis_data3 = [82,83,82,76,84,92,81]
        
#画图 
plt.plot(x_axis_data, y_axis_data1, 'b*--', alpha=0.5, linewidth=1, label='acc')#'
plt.plot(x_axis_data, y_axis_data2, 'rs--', alpha=0.5, linewidth=1, label='acc')
plt.plot(x_axis_data, y_axis_data3, 'go--', alpha=0.5, linewidth=1, label='acc')

## 设置数据标签位置及大小
for a, b in zip(x_axis_data, y_axis_data1):
    plt.text(a, b, str(b), ha='center', va='bottom', fontsize=8)  #  ha='center', va='top'
for a, b1 in zip(x_axis_data, y_axis_data2):
    plt.text(a, b1, str(b1), ha='center', va='bottom', fontsize=8)  
for a, b2 in zip(x_axis_data, y_axis_data3):
    plt.text(a, b2, str(b2), ha='center', va='bottom', fontsize=8)
plt.legend()  #显示上面的label

plt.xlabel('time')
plt.ylabel('number')#accuracy
 
#plt.ylim(-1,1)#仅设置y轴坐标范围
plt.show()

运行,得到:

附上形状,可与颜色搭配:

‘s’ : 方块状
‘o’ : 实心圆
‘^’ : 正三角形
‘v’ : 反正三角形
‘+’ : 加好
‘*’ : 星号
‘x’ : x号
‘p’ : 五角星
‘1’ : 三脚架标记
‘2’ : 三脚架标记

总结

到此这篇关于使用python matplotlib画折线图的文章就介绍到这了,更多相关python matplotlib画折线图内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python实现区间调度算法

    Python实现区间调度算法

    区间调度算法是一种在给定的一组任务中,选择尽可能多的相互不冲突的任务的算法,本文主要介绍了如何使用Python实现区间调度算法,有需要的可以参考下
    2024-10-10
  • 使用Python中的Argparse实现将列表作为命令行参数传递

    使用Python中的Argparse实现将列表作为命令行参数传递

    Argparse 是一个 Python 库,用于以用户友好的方式解析命令行参数,本文我们将讨论如何使用 Python 中的 Argparse 库将列表作为命令行参数传递,感兴趣的可以了解下
    2023-08-08
  • pycharm进入时每次都是insert模式的解决方式

    pycharm进入时每次都是insert模式的解决方式

    这篇文章主要介绍了pycharm进入时每次都是insert模式的解决方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-02-02
  • 使用Python压缩和解压缩zip文件的教程

    使用Python压缩和解压缩zip文件的教程

    这篇文章主要介绍了使用Python压缩和解压缩zip文件的教程,主要用到了zipfile包,需要的朋友可以参考下
    2015-05-05
  • Django项目中动态设置静态文件路径的全过程

    Django项目中动态设置静态文件路径的全过程

    这篇文章主要给大家介绍了关于Django项目中动态设置静态文件路径的相关资料,文中通过图文介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2022-02-02
  • 如何将自己的python库打包成wheel文件并上传到pypi

    如何将自己的python库打包成wheel文件并上传到pypi

    这篇文章主要介绍了如何将自己的python库打包成wheel文件并上传到pypi,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-04-04
  • python 数据挖掘算法的过程详解

    python 数据挖掘算法的过程详解

    这篇文章主要介绍了python 数据挖掘算法,首先给大家介绍了数据挖掘的过程,基于sklearn主要的算法模型讲解,给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-02-02
  • python cv2截取不规则区域图片实例

    python cv2截取不规则区域图片实例

    今天小编就为大家分享一篇python cv2截取不规则区域图片实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • 使用Python读取二进制文件的实例讲解

    使用Python读取二进制文件的实例讲解

    今天小编就为大家分享一篇使用Python读取二进制文件的实例讲解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-07-07
  • python Tkinter版学生管理系统

    python Tkinter版学生管理系统

    这篇文章主要为大家详细介绍了python Tkinter版学生管理系统,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-02-02

最新评论