python神经网络使用tensorflow实现自编码Autoencoder

 更新时间:2022年05月05日 09:25:56   作者:Bubbliiiing  
这篇文章主要为大家介绍了python神经网络使用tensorflow实现自编码Autoencoder,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

学习前言

当你发现数据的维度太多怎么办!没关系,我们给它降维!
当你发现不会降维怎么办!没关系,来这里看看怎么autoencode

antoencoder简介

1、为什么要降维

随着社会的发展,可以利用人工智能解决的越来越多,人工智能所需要处理的问题也越来越复杂,作为神经网络的输入量,维度也越来越大,也就出现了当前所面临的“维度灾难”与“信息丰富、知识贫乏”的问题。

维度太多并不是一件优秀的事情,太多的维度同样会导致训练效率低,特征难以提取等问题,如果可以通过优秀的方法对特征进行提取,将会大大提高训练效率。

常见的降维方法有PCA(主成分分析)和LDA(线性判别分析,Fisher Linear Discriminant Analysis),二者的使用方法我会在今后的日子继续写BLOG进行阐明。

2、antoencoder的原理

如图是一个降维的神经网络的示意图,其可以将n维数据量降维2维数据量:

输入量与输出量都是数据原有的全部特征,我们利用tensorflow的optimizer对w1ij和w2ji进行优化。在优化的最后,w1ij就是我们将n维数据编码到2维的编码方式,w2ji就是我们将2维数据进行解码到n维数据的解码方式。

3、python中encode的实现

def encoder(x):
    layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
                                   biases['encoder_b1']))
    layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
                                   biases['encoder_b2']))
    layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['encoder_h3']),
                                   biases['encoder_b3']))
    layer_4 = tf.add(tf.matmul(layer_3, weights['encoder_h4']),
                                    biases['encoder_b4'])
    return layer_4
def decoder(x):
    layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
                                   biases['decoder_b1']))
    layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
                                   biases['decoder_b2']))
    layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['decoder_h3']),
                                biases['decoder_b3']))
    layer_4 = tf.nn.sigmoid(tf.add(tf.matmul(layer_3, weights['decoder_h4']),
                                biases['decoder_b4']))
    return layer_4
encoder_op = encoder(X)
decoder_op = decoder(encoder_op)

其中encode函数的输出就是编码后的结果。

全部代码

该例子为手写体识别例子,将784维缩小为2维,并且以图像的方式显示。

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data",one_hot = "true")
learning_rate = 0.01    #学习率
training_epochs = 10	#训练十次
batch_size = 256
display_step = 1
examples_to_show = 10
n_input = 784
X = tf.placeholder(tf.float32,[None,n_input])
#encode的过程分为4次,分别是784->128、128->64、64->10、10->2
n_hidden_1 = 128
n_hidden_2 = 64
n_hidden_3 = 10
n_hidden_4 = 2
weights = {
    #这四个是用于encode的
    'encoder_h1': tf.Variable(tf.truncated_normal([n_input, n_hidden_1],)),
    'encoder_h2': tf.Variable(tf.truncated_normal([n_hidden_1, n_hidden_2],)),
    'encoder_h3': tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_3],)),
    'encoder_h4': tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_4],)),
    #这四个是用于decode的
    'decoder_h1': tf.Variable(tf.truncated_normal([n_hidden_4, n_hidden_3],)),
    'decoder_h2': tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_2],)),
    'decoder_h3': tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_1],)),
    'decoder_h4': tf.Variable(tf.truncated_normal([n_hidden_1, n_input],)),
}
biases = {
    #这四个是用于encode的
    'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
    'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
    'encoder_b3': tf.Variable(tf.random_normal([n_hidden_3])),
    'encoder_b4': tf.Variable(tf.random_normal([n_hidden_4])),
    #这四个是用于decode的
    'decoder_b1': tf.Variable(tf.random_normal([n_hidden_3])),
    'decoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
    'decoder_b3': tf.Variable(tf.random_normal([n_hidden_1])),
    'decoder_b4': tf.Variable(tf.random_normal([n_input])),
}
def encoder(x):
    #encode函数,分为四步,layer4为编码后的结果
    layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
                                   biases['encoder_b1']))
    layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
                                   biases['encoder_b2']))
    layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['encoder_h3']),
                                   biases['encoder_b3']))
    layer_4 = tf.add(tf.matmul(layer_3, weights['encoder_h4']),
                                    biases['encoder_b4'])
    return layer_4
def decoder(x):
    #decode函数,分为四步,layer4为解码后的结果
    layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
                                   biases['decoder_b1']))
    layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
                                   biases['decoder_b2']))
    layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['decoder_h3']),
                                biases['decoder_b3']))
    layer_4 = tf.nn.sigmoid(tf.add(tf.matmul(layer_3, weights['decoder_h4']),
                                biases['decoder_b4']))
    return layer_4
encoder_op = encoder(X)
decoder_op = decoder(encoder_op)
#将编码再解码的结果与原始码对比,查看区别
y_pred = decoder_op
y_label = X
#比较特征损失情况
cost = tf.reduce_mean(tf.square(y_pred-y_label))
train = tf.train.AdamOptimizer(learning_rate).minimize(cost)
init = tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    #每个世代进行total_batch次训练
    total_batch = int(mnist.train.num_examples/batch_size)
    for epoch in range(training_epochs):
        for i in range(total_batch):
            batch_xs,batch_ys = mnist.train.next_batch(batch_size)
            _,c = sess.run([train,cost],feed_dict={X:batch_xs})
        if epoch % display_step == 0:
            print("Epoch :","%02d"%epoch,"cost =","%.4f"%c)
    #利用test测试机进行测试
    encoder_result = sess.run(encoder_op,feed_dict={X:mnist.test.images})
    plt.scatter(encoder_result[:,0],encoder_result[:,1],c=np.argmax(mnist.test.labels,1),s=1)
    plt.show()

实现结果为:

可以看到实验结果分为很多个区域块,基本可以识别。

以上就是python神经网络使用tensorflow实现自编码Autoencoder的详细内容,更多关于tensorflow自编码Autoencoder的资料请关注脚本之家其它相关文章!

相关文章

  • pycharm利用pyspark远程连接spark集群的实现

    pycharm利用pyspark远程连接spark集群的实现

    由于工作需要,利用spark完成机器学习。因此需要对spark集群进行操作。所以利用pycharm和pyspark远程连接spark集群。感兴趣的可以了解一下
    2021-05-05
  • Python3+Flask安装使用教程详解

    Python3+Flask安装使用教程详解

    这篇文章主要介绍了Python3+Flask安装使用教程详解,需要的朋友可以参考下
    2021-02-02
  • python多行字符串拼接使用小括号的方法

    python多行字符串拼接使用小括号的方法

    今天小编就为大家分享一篇python多行字符串拼接使用小括号的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-07-07
  • python实现发送邮件功能

    python实现发送邮件功能

    这篇文章主要为大家详细介绍了python实现发送邮件功能,使用的模块是smtplib、MIMEText,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-07-07
  • matplotlib对象拾取事件处理的实现

    matplotlib对象拾取事件处理的实现

    这篇文章主要介绍了matplotlib对象拾取事件处理的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-01-01
  • Elasticsearch文档索引基本操作增删改查示例

    Elasticsearch文档索引基本操作增删改查示例

    这篇文章主要为答案及介绍了Elasticsearch文档索引基本操作增删改查示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-04-04
  • Python将图片批量从png格式转换至WebP格式

    Python将图片批量从png格式转换至WebP格式

    最近因为工作需要去研究了下png的压缩,发现转换成webp格式可以小很多,下面给大家分享利用Python将图片批量从png格式转换至WebP格式的方法,下面来一起看看。
    2016-08-08
  • python机器学习之贝叶斯分类

    python机器学习之贝叶斯分类

    这篇文章主要为大家详细介绍了python机器学习之贝叶斯分类的相关资料,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-03-03
  • pygame学习笔记(4):声音控制

    pygame学习笔记(4):声音控制

    这篇文章主要介绍了pygame学习笔记(4):声音控制,本文讲解了pygame.mixer启动与初始化、播放声音片段wav文件、播放mp3、wma、ogg音乐文件、控制音量、制作mp3播放器中遇到的问题等内容,需要的朋友可以参考下
    2015-04-04
  • Python3爬虫之自动查询天气并实现语音播报

    Python3爬虫之自动查询天气并实现语音播报

    这篇文章主要介绍了Python3爬虫之自动查询天气并实现语音播报,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-02-02

最新评论