Python数据分析之PMI数据图形展示

 更新时间:2022年05月06日 10:47:05   作者:​ 斜月   ​  
这篇文章主要介绍了Python数据分析之PMI数据图形展示,文章介绍了简单的python爬虫,并使用numpy进行了简单的数据处理,最终使用 matplotlib 进行图形绘制,实现了直观的方式展示制造业和非制造业指数图形,需要的朋友可以参考一下

前言

前文讲述了ppi-cpim0-m1-m2的图形绘制,在本文中继续分享一个反映经济活动景气度的指标PMI,在本文中还是采用爬虫的方式获取数据,然后通过matplotlib绘图工具将PMI逐年数据进行展示。对于新手来讲,会学习到python的基础知识、爬虫以及图形绘制的知识。

PMI 数据获取

在获取数据之前,先讲述一下PMI(采购经理人指数) 数据背后的含义: 大家都知道,制造业是一个国家的立国之本,那么PMI就是衡量一个国家制造业发展运行情况的指标,通常情况下,比 50% 为分界线来经济强弱的分水岭,大于 50% 则代表制造业处于扩张,处理 40-50 则代表衰退,40 以下就是萧条了。

既然是数据获取,就需要找一个权威的网站获取数据,这里小编采用东方财富网的数据,这里直接给出页面的访问地址:

# 货币供应量数据访问地址
https://data.eastmoney.com/cjsj/pmi.html

采购经理人指数的数据来源如下图所示,这里只获取制造业和非制造业的指数数据即可,同比增长数据就不去获取了。

既然知道了采购经理人指数的来源,怎么获取数据呢,是不是要复制页面进 excel 在进行解析,如果这样的做话,费时费力。我想诸位页注意到了表格下方有分页,那么肯定是有通过 ajax 和后台进行通信的,通过观察可以发现如下接口,数据交互的结果如下图所示:

#采购经理人指数
https://datainterface.eastmoney.com/EM_DataCenter/JS.aspx?type=GJZB&sty=ZGZB&p=1&ps=200&mkt=21

# 这里也同样贴了前文中货币供应量接口、 ppi 和 cpi 的接口,会发现都是一样的,只不过mkt的参数不一样
# 货币供应量接口
https://datainterface.eastmoney.com/EM_DataCenter/JS.aspx?type=GJZB&sty=ZGZB&p=1&ps=200&mkt=11
# ppi 数据和cpi 数据
https://datainterface.eastmoney.com/EM_DataCenter/JS.aspx?type=GJZB&sty=ZGZB&p=1&ps=10&mkt=22
https://datainterface.eastmoney.com/EM_DataCenter/JS.aspx?type=GJZB&sty=ZGZB&p=1&ps=10&mkt=19

至于数据的获取,还是使用原理的方式进行操作,使用python抓取数据,这里采用requests来获取数据:

    body = requests.get(req_url).text
    body = body.replace("(", "").replace(")", "")
    data_list = body.split("\",\"")

    # 定义数据
    date_list, pmi1_list, pmi2_list = [], [], []

    for node in data_list:
        node = node.replace("]", "").replace("[", "").replace("\"", "")
        arr_list = node.split(",")
        date = arr_list[0]
        if date < "2010-01-01":
            continue
        # 时间数据
        date_list.append(date)
        # 数据操作存储
        pmi1_list.append(float(arr_list[1]))
        pmi2_list.append(float(arr_list[3]))
        print(node)

最终获取到的数据如下图所示:

pmi 图形绘制

在绘制图形之前,需要先对数据进行处理:

  • 1 数据需要进行加工,提取需要展示的数据,而后数据的格式需要转换。
  • 2 在数据处理时,还是按照制造业和非制造业、时间的列表来获取数据。
  • 3 依旧使用 np.asarray 创建数据,进行图形绘制的准备工作。

按照以上的观点,数据处理的代码如下图所示:

对于图形的绘制,有以下几点:

  • 1 图形中需要展示制造业和非制造业的数据情况,同时展示图例进行标识。
  • 2 设置指标为 50 和 40 水平线,用于设置标准对比线型。

最后,经过这些编码,得到最终的制造业和非制造业指数对比图形如下:

总结

文章介绍了简单的python爬虫,并使用numpy进行了简单的数据处理,最终使用matplotlib进行图形绘制,实现了直观的方式展示制造业和非制造业指数图形。使用接口的方式获取数据可以随时获取数据更新重新绘制图形,省去了数据重新抓取的步骤。

到此这篇关于Python数据分析之PMI数据图形展示的文章就介绍到这了,更多相关Python PMI 内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python 泛型函数--singledispatch的使用解读

    python 泛型函数--singledispatch的使用解读

    这篇文章主要介绍了python 泛型函数--singledispatch的使用解读,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-09-09
  • Python图像处理之几何变换

    Python图像处理之几何变换

    这篇文章将详细讲解图像几何变换,包括图像平移、图像缩放和图像旋转。文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编学习一下
    2022-01-01
  • Python工具PDB调试器的使用方法详解

    Python工具PDB调试器的使用方法详解

    还记得你是如何进行代码调试的吗?有人会说,我是添加一些输出语句,有人说,我是使用IDE自带的设置断点功能,当然都没有错,只是看哪个更合适,更能提升效率,但这都不是我们今天讲的重点,今天的重点是Python中PDB调试器的使用方法,需要的朋友可以参考下
    2023-11-11
  • 深入理解NumPy简明教程---数组3(组合)

    深入理解NumPy简明教程---数组3(组合)

    本篇文章对NumPy数组进行较深入的探讨。首先介绍自定义类型的数组,接着数组的组合,最后介绍数组复制方面的问题,有兴趣的可以了解一下。
    2016-12-12
  • 一文带你掌握Python中pathlib模块的用法

    一文带你掌握Python中pathlib模块的用法

    pathlib 模块提供了表示文件系统路径的类,可适用于不同的操作系统,本文将带你学习如何使用 pathlib 模块中的 Path 类读写文件、操纵文件路径等操作,需要的可以参考下
    2023-08-08
  • Python3读取UTF-8文件及统计文件行数的方法

    Python3读取UTF-8文件及统计文件行数的方法

    这篇文章主要介绍了Python3读取UTF-8文件及统计文件行数的方法,涉及Python读取指定编码文件的相关技巧,需要的朋友可以参考下
    2015-05-05
  • Python实现arctan换算角度的示例

    Python实现arctan换算角度的示例

    本文主要介绍了Python实现arctan换算角度的示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-03-03
  • 自定义django admin model表单提交的例子

    自定义django admin model表单提交的例子

    今天小编就为大家分享一篇自定义django admin model表单提交的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-08-08
  • 利用django model save方法对未更改的字段依然进行了保存

    利用django model save方法对未更改的字段依然进行了保存

    这篇文章主要介绍了利用django model save方法对未更改的字段依然进行了保存,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-03-03
  • python如何获取列表中每个元素的下标位置

    python如何获取列表中每个元素的下标位置

    这篇文章主要介绍了python如何获取列表中每个元素的下标位置,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-07-07

最新评论