使用python opencv对畸变图像进行矫正的实现

 更新时间:2022年05月07日 10:50:11   作者:燕阳天  
本文主要介绍了使用python opencv对畸变图像进行矫正的实现,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

代码:

__Author__ = "Shliang"
__Email__ = "shliang0603@gmail.com"

import os
import cv2
import numpy as np
from tqdm import tqdm



def undistort(frame):
    fx = 685.646752
    cx = 649.107905
    fy = 676.658033
    cy = 338.054431
    k1, k2, p1, p2, k3 = -0.363219, 0.093818, 0.006178, -0.003714, 0.0

    # 相机坐标系到像素坐标系的转换矩阵
    k = np.array([
        [fx, 0, cx],
        [0, fy, cy],
        [0, 0, 1]
    ])
    # 畸变系数
    d = np.array([
        k1, k2, p1, p2, k3
    ])
    h, w = frame.shape[:2]
    mapx, mapy = cv2.initUndistortRectifyMap(k, d, None, k, (w, h), 5)
    return cv2.remap(frame, mapx, mapy, cv2.INTER_LINEAR)


# 对摄像头实时视频流做畸变矫正
def distortion_correction_cam():
    cap = cv2.VideoCapture(0)
    while (cap.isOpened()):
        ret, frame = cap.read()
        undistort_frame = undistort(frame)
        compare = np.hstack((frame, undistort_frame))
        cv2.imshow('frame', compare)

        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    cap.release()
    cv2.destroyAllWindows()


# 对目录下的所有图片做畸变矫正,并把畸变矫正后的图片保存下来
def distortion_correction_imgs(input_dir, output_dir):
    in_imgs = os.listdir(input_dir)

    for img_name in tqdm(in_imgs):
        image = cv2.imread(os.path.join(input_dir, img_name))
        distroted_img = undistort(image)
        cv2.imwrite(os.path.join(output_dir, img_name), distroted_img)



if __name__ == '__main__':
    input_dir = "/home/shl/extract_rosbag_data/0324_bags/plycal_calib/root/images"
    output_dir = "/home/shl/extract_rosbag_data/0324_bags/plycal_calib/root/distro_imgs"
    # distortion_correction_imgs(input_dir, output_dir)

    distortion_correction_cam()

对图片进行矫正效果:

原图:

矫正后的图片:

采集的摄像头画面矫正效果:

从上面的换面可以看到,左边是未矫正的画面,右边是矫正后的画面

  • 矫正后的画面会被裁切,明显可以看到画面中的信息是有裁切的,例如左边的椅子已经被裁切掉了
  • 矫正后的画面和原画面是保持相同的分辨率:640x480,但是,为什么会看到画面会出现横向的拉伸,这是因为标定相机内参的时候画面的分辨率设置为1280x720=16:9,但是opencv读取摄像头默认的分辨率却是640x480=4:3,两者的比例都不一样,所以肯定会出现拉伸

解决拉伸的方式,就是把读取摄像头的时候,把摄像头的分辨率设置成和标定的时候一样的分辨率,设置为1280x720,下面是如何在opencv读取摄像头的时候设置摄像头分辨率:

# 对摄像头实时视频流做畸变矫正
def distortion_correction_cam():
    cap = cv2.VideoCapture(0)

    # 获取摄像头读取画面的宽和高
    width = cap.get(3)
    height = cap.get(4)
    fps = cap.get(5)
    print(width, height, fps)  # 640.0 480.0 30.0

    # 在这里把摄像头的分辨率修改为和我们标定时使用的一样的分辨率 1280x720
    cap.set(3, 1280)
    cap.set(4, 720)
    width = cap.get(3)
    height = cap.get(4)
    print(width, height, fps)  # 1280.0 720.0 30.0


    while (cap.isOpened()):
        ret, frame = cap.read()
        print(frame.shape)
        undistort_frame = undistort(frame)
        compare = np.hstack((frame, undistort_frame))
        cv2.imshow('frame', compare)

        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    cap.release()
    cv2.destroyAllWindows()

重新设置分辨率后,矫正前后画面对比,可以看到几乎是没有横向或纵向拉伸的!

参考:

https://blog.csdn.net/weixin_40516558/article/details/103494029

https://blog.csdn.net/guaiderzhu1314/article/details/96306509

https://www.codenong.com/cs110623399/

到此这篇关于使用python opencv对畸变图像进行矫正的实现的文章就介绍到这了,更多相关python opencv畸变图像矫正内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Pytorch中torch.utils.checkpoint()及用法详解

    Pytorch中torch.utils.checkpoint()及用法详解

    在PyTorch中,torch.utils.checkpoint 模块提供了实现梯度检查点(也称为checkpointing)的功能,这篇文章给大家介绍了Pytorch中torch.utils.checkpoint()的相关知识,感兴趣的朋友一起看看吧
    2024-03-03
  • 使用python PIL库实现简单验证码的去噪方法步骤

    使用python PIL库实现简单验证码的去噪方法步骤

    这篇文章主要介绍了使用python PIL库实现简单验证码的去噪方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-05-05
  • python之import机制详解

    python之import机制详解

    这篇文章主要介绍了python的import机制,需要的朋友可以参考下
    2014-07-07
  • 对python numpy数组中冒号的使用方法详解

    对python numpy数组中冒号的使用方法详解

    下面小编就为大家分享一篇对python numpy数组中冒号的使用方法详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-04-04
  • Python实战项目之MySQL tkinter pyinstaller实现学生管理系统

    Python实战项目之MySQL tkinter pyinstaller实现学生管理系统

    读万卷书不如行万里路,只学书上的理论是远远不够的,只有在实战中才能获得能力的提升,本篇文章手把手带你用MySQL、tkinter、 pyinstaller实现一个学生管理系统,大家可以通过案例查缺补漏,提升水平
    2021-10-10
  • python中的httpx异步请求

    python中的httpx异步请求

    这篇文章主要介绍了python中的httpx异步请求方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-06-06
  • python从网络读取图片并直接进行处理的方法

    python从网络读取图片并直接进行处理的方法

    这篇文章主要介绍了python从网络读取图片并直接进行处理的方法,涉及cStringIO模块模拟本地文件的使用技巧,需要的朋友可以参考下
    2015-05-05
  • keras中的卷积层&池化层的用法

    keras中的卷积层&池化层的用法

    这篇文章主要介绍了keras中的卷积层&池化层的用法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-05-05
  • 详解Django模板层过滤器和继承的问题

    详解Django模板层过滤器和继承的问题

    今天抽空给大家介绍Django模板层过滤器和继承的问题,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧
    2021-07-07
  • python 爬虫网页登陆的简单实现

    python 爬虫网页登陆的简单实现

    这篇文章主要介绍了python 爬虫网页登陆的简单实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-11-11

最新评论