python神经网络ShuffleNetV2模型复现详解

 更新时间:2022年05月07日 14:15:26   作者:Bubbliiiing  
这篇文章主要为大家介绍了python神经网络ShuffleNetV2模型复现详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

什么是ShuffleNetV2

据说ShuffleNetV2比Mobilenet还要厉害,我决定好好学一下

这篇是ECCV2018关于轻量级模型的文章。

目前大部分的轻量级模型在对比模型速度时用的指标是FLOPs,这个指标主要衡量的就是卷积层的乘法操作。

但是实际运用中会发现,同一个FLOPS的网络运算速度却不同,只用FLOPS去进行衡量的话并不能完全代表模型速度。

通过如下图所示对比,作者发现Elemwise/Data IO等内存读写密集型操作也会极大的影响模型运算速度。

结合理论与实验作者提出了4条实用的指导原则:

1、卷积层的输入和输出特征通道数相等时MAC最小,此时模型速度最快。

2、过量使用组卷积会增加MAC。

3、网络碎片化会降低并行度。

4、不能忽略元素级操作,比如ReLU和Add,虽然它们的FLOPs较小,但是却需要较大的MAC。

ShuffleNetV2

1、所用模块

如图所示是ShuffleNetV2所常用的两个模块:

1、当Stride==1的时候,采用左边的模块,由于残差边没有卷积,因此宽高不变,主要用于加深网络层数。

2、当Stride==2的时候,采用右边的模块,由于残差边有卷积,因此宽高可变,主要用于压缩特征层的宽高,进行下采样。

模块实现代码如下:

def channel_split(x, name=''):
    # 输入进来的通道数
    in_channles = x.shape.as_list()[-1]
    ip = in_channles // 2
    # 对通道数进行分割
    c_hat = Lambda(lambda z: z[:, :, :, 0:ip], name='%s/sp%d_slice' % (name, 0))(x)
    c = Lambda(lambda z: z[:, :, :, ip:], name='%s/sp%d_slice' % (name, 1))(x)
    return c_hat, c
def channel_shuffle(x):
    height, width, channels = x.shape.as_list()[1:]
    channels_per_split = channels // 2
    # 通道交换
    x = K.reshape(x, [-1, height, width, 2, channels_per_split])
    x = K.permute_dimensions(x, (0,1,2,4,3))
    x = K.reshape(x, [-1, height, width, channels])
    return x
def shuffle_unit(inputs, out_channels, bottleneck_ratio, strides=2, stage=1, block=1):
    bn_axis = -1
    prefix = 'stage{}/block{}'.format(stage, block)
    # [116, 232, 464]
    bottleneck_channels = int(out_channels * bottleneck_ratio/2)
    if strides < 2:
        c_hat, c = channel_split(inputs, '{}/spl'.format(prefix))
        inputs = c
    # [116, 232, 464]
    x = Conv2D(bottleneck_channels, kernel_size=(1,1), strides=1, padding='same', name='{}/1x1conv_1'.format(prefix))(inputs)
    x = BatchNormalization(axis=bn_axis, name='{}/bn_1x1conv_1'.format(prefix))(x)
    x = Activation('relu', name='{}/relu_1x1conv_1'.format(prefix))(x)
    # 深度可分离卷积
    x = DepthwiseConv2D(kernel_size=3, strides=strides, padding='same', name='{}/3x3dwconv'.format(prefix))(x)
    x = BatchNormalization(axis=bn_axis, name='{}/bn_3x3dwconv'.format(prefix))(x)
    # [116, 232, 464]
    x = Conv2D(bottleneck_channels, kernel_size=1,strides=1,padding='same', name='{}/1x1conv_2'.format(prefix))(x)
    x = BatchNormalization(axis=bn_axis, name='{}/bn_1x1conv_2'.format(prefix))(x)
    x = Activation('relu', name='{}/relu_1x1conv_2'.format(prefix))(x)
    # 当strides等于2的时候,残差边需要添加卷积
    if strides < 2:
        ret = Concatenate(axis=bn_axis, name='{}/concat_1'.format(prefix))([x, c_hat])
    else:
        s2 = DepthwiseConv2D(kernel_size=3, strides=2, padding='same', name='{}/3x3dwconv_2'.format(prefix))(inputs)
        s2 = BatchNormalization(axis=bn_axis, name='{}/bn_3x3dwconv_2'.format(prefix))(s2)
        s2 = Conv2D(bottleneck_channels, kernel_size=1,strides=1,padding='same', name='{}/1x1_conv_3'.format(prefix))(s2)
        s2 = BatchNormalization(axis=bn_axis, name='{}/bn_1x1conv_3'.format(prefix))(s2)
        s2 = Activation('relu', name='{}/relu_1x1conv_3'.format(prefix))(s2)
        ret = Concatenate(axis=bn_axis, name='{}/concat_2'.format(prefix))([x, s2])
    ret = Lambda(channel_shuffle, name='{}/channel_shuffle'.format(prefix))(ret)
    return ret
def block(x, channel_map, bottleneck_ratio, repeat=1, stage=1):
    x = shuffle_unit(x, out_channels=channel_map[stage-1],
                      strides=2,bottleneck_ratio=bottleneck_ratio,stage=stage,block=1)
    for i in range(1, repeat+1):
        x = shuffle_unit(x, out_channels=channel_map[stage-1],strides=1,
                          bottleneck_ratio=bottleneck_ratio,stage=stage, block=(1+i))
    return x

2、网络整体结构

网络整体结构如图所示:

1、当输入进来的图片为224,224,3的时候,会经过一次卷积压缩+一次最大池化,此时网络的shape由224,224,3->112,112,24->56,56,24。

2、经过一次右边的ShuffleNet模块后进行三次左边的ShuffleNet模块。此时网络的shape由56,56,24->28,28,116。

3、经过一次右边的ShuffleNet模块后进行七次左边的ShuffleNet模块。此时网络的shape由28,28,116->14,14,232。

4、经过一次右边的ShuffleNet模块后进行三次左边的ShuffleNet模块。此时网络的shape由14,14,232->7,7,464。

5、卷积到1024,此时网络的shape由7,7,464->7,7,1024。

6、全局池化后,进行全连接,用于预测。

网络实现代码

ShuffleNetV2一共有4个scale,分别对应不同大小的ShuffleNetV2。

import numpy as np
from keras.utils import plot_model
from keras.layers import Input, Conv2D, MaxPool2D
from keras.layers import Activation, Add, Concatenate, Conv2D
from keras.layers import GlobalAveragePooling2D, Dense
from keras.layers import MaxPool2D,AveragePooling2D, BatchNormalization, Lambda, DepthwiseConv2D
from keras.models import Model
import keras.backend as K
import numpy as np
def channel_split(x, name=''):
    # 输入进来的通道数
    in_channles = x.shape.as_list()[-1]
    ip = in_channles // 2
    # 对通道数进行分割
    c_hat = Lambda(lambda z: z[:, :, :, 0:ip], name='%s/sp%d_slice' % (name, 0))(x)
    c = Lambda(lambda z: z[:, :, :, ip:], name='%s/sp%d_slice' % (name, 1))(x)
    return c_hat, c
def channel_shuffle(x):
    height, width, channels = x.shape.as_list()[1:]
    channels_per_split = channels // 2
    # 通道交换
    x = K.reshape(x, [-1, height, width, 2, channels_per_split])
    x = K.permute_dimensions(x, (0,1,2,4,3))
    x = K.reshape(x, [-1, height, width, channels])
    return x
def shuffle_unit(inputs, out_channels, bottleneck_ratio, strides=2, stage=1, block=1):
    bn_axis = -1
    prefix = 'stage{}/block{}'.format(stage, block)
    # [116, 232, 464]
    bottleneck_channels = int(out_channels * bottleneck_ratio/2)
    if strides < 2:
        c_hat, c = channel_split(inputs, '{}/spl'.format(prefix))
        inputs = c
    # [116, 232, 464]
    x = Conv2D(bottleneck_channels, kernel_size=(1,1), strides=1, padding='same', name='{}/1x1conv_1'.format(prefix))(inputs)
    x = BatchNormalization(axis=bn_axis, name='{}/bn_1x1conv_1'.format(prefix))(x)
    x = Activation('relu', name='{}/relu_1x1conv_1'.format(prefix))(x)
    # 深度可分离卷积
    x = DepthwiseConv2D(kernel_size=3, strides=strides, padding='same', name='{}/3x3dwconv'.format(prefix))(x)
    x = BatchNormalization(axis=bn_axis, name='{}/bn_3x3dwconv'.format(prefix))(x)
    # [116, 232, 464]
    x = Conv2D(bottleneck_channels, kernel_size=1,strides=1,padding='same', name='{}/1x1conv_2'.format(prefix))(x)
    x = BatchNormalization(axis=bn_axis, name='{}/bn_1x1conv_2'.format(prefix))(x)
    x = Activation('relu', name='{}/relu_1x1conv_2'.format(prefix))(x)
    # 当strides等于2的时候,残差边需要添加卷积
    if strides < 2:
        ret = Concatenate(axis=bn_axis, name='{}/concat_1'.format(prefix))([x, c_hat])
    else:
        s2 = DepthwiseConv2D(kernel_size=3, strides=2, padding='same', name='{}/3x3dwconv_2'.format(prefix))(inputs)
        s2 = BatchNormalization(axis=bn_axis, name='{}/bn_3x3dwconv_2'.format(prefix))(s2)
        s2 = Conv2D(bottleneck_channels, kernel_size=1,strides=1,padding='same', name='{}/1x1_conv_3'.format(prefix))(s2)
        s2 = BatchNormalization(axis=bn_axis, name='{}/bn_1x1conv_3'.format(prefix))(s2)
        s2 = Activation('relu', name='{}/relu_1x1conv_3'.format(prefix))(s2)
        ret = Concatenate(axis=bn_axis, name='{}/concat_2'.format(prefix))([x, s2])
    ret = Lambda(channel_shuffle, name='{}/channel_shuffle'.format(prefix))(ret)
    return ret
def block(x, channel_map, bottleneck_ratio, repeat=1, stage=1):
    x = shuffle_unit(x, out_channels=channel_map[stage-1],
                      strides=2,bottleneck_ratio=bottleneck_ratio,stage=stage,block=1)
    for i in range(1, repeat+1):
        x = shuffle_unit(x, out_channels=channel_map[stage-1],strides=1,
                          bottleneck_ratio=bottleneck_ratio,stage=stage, block=(1+i))
    return x
def ShuffleNetV2(input_tensor=None,
                 pooling='max',
                 input_shape=(224,224,3),
                 num_shuffle_units=[3,7,3],
                 scale_factor=1,
                 bottleneck_ratio=1,
                 classes=1000):
    name = 'ShuffleNetV2_{}_{}_{}'.format(scale_factor, bottleneck_ratio, "".join([str(x) for x in num_shuffle_units]))
    out_dim_stage_two = {0.5:48, 1:116, 1.5:176, 2:244}
    out_channels_in_stage = np.array([1,1,2,4])
    out_channels_in_stage *= out_dim_stage_two[scale_factor]  #  calculate output channels for each stage
    out_channels_in_stage[0] = 24  # first stage has always 24 output channels
    out_channels_in_stage = out_channels_in_stage.astype(int)
    img_input = Input(shape=input_shape)
    x = Conv2D(filters=out_channels_in_stage[0], kernel_size=(3, 3), padding='same', use_bias=False, strides=(2, 2),
               activation='relu', name='conv1')(img_input)
    x = MaxPool2D(pool_size=(3, 3), strides=(2, 2), padding='same', name='maxpool1')(x)
    for stage in range(len(num_shuffle_units)):
        repeat = num_shuffle_units[stage]
        x = block(x, out_channels_in_stage,
                   repeat=repeat,
                   bottleneck_ratio=bottleneck_ratio,
                   stage=stage + 2)
    if scale_factor!=2:
        x = Conv2D(1024, kernel_size=1, padding='same', strides=1, name='1x1conv5_out', activation='relu')(x)
    else:
        x = Conv2D(2048, kernel_size=1, padding='same', strides=1, name='1x1conv5_out', activation='relu')(x)
    x = GlobalAveragePooling2D(name='global_avg_pool')(x)
    x = Dense(classes, name='fc')(x)
    x = Activation('softmax', name='softmax')(x)
    inputs = img_input
    model = Model(inputs, x, name=name)
    return model
if __name__ == '__main__':
    import os
    os.environ['CUDA_VISIBLE_DEVICES'] = ''
    model = ShuffleNetV2(input_shape=(224, 224, 3),scale_factor=1)
    model.summary()

以上就是python神经网络ShuffleNetV2模型复现详解的详细内容,更多关于ShuffleNetV2模型复现的资料请关注脚本之家其它相关文章!

相关文章

  • Python爬虫实例——爬取美团美食数据

    Python爬虫实例——爬取美团美食数据

    这篇文章主要介绍了Python爬虫如何爬取美团美食数据,文中讲解非常详细,代码帮助大家更好的理解和学习,感兴趣的朋友可以了解下
    2020-07-07
  • python实现电脑操控安卓手机

    python实现电脑操控安卓手机

    网上虽然有很多教程,但是随着版本的更新总有各种各样的坑,本文以亲身踏坑经历介绍了电脑使用python操控安卓手机,从安装到使用方法,感兴趣的可以了解一下
    2021-05-05
  • numpy数组的重塑和转置实现

    numpy数组的重塑和转置实现

    本文主要介绍了numpy数组的重塑和转置实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-03-03
  • 一文搞懂Python中函数的定义与使用

    一文搞懂Python中函数的定义与使用

    函数是具有某种特定功能的代码块,可以重复使用。这篇文章将为大家详细介绍Python中函数的定义与使用,感兴趣的小伙伴可以学习一下
    2022-06-06
  • 解决Pycharm输入法无法切换中英文问题

    解决Pycharm输入法无法切换中英文问题

    这篇文章主要介绍了解决Pycharm输入法无法切换中英文问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-11-11
  • Python json模块常用方法小结

    Python json模块常用方法小结

    本文主要介绍了Python json模块常用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-03-03
  • python脚本调用iftop 统计业务应用流量的思路详解

    python脚本调用iftop 统计业务应用流量的思路详解

    这篇文章主要介绍了python脚本调用iftop 统计业务应用流量的思路详解,本文给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-10-10
  • 基于Python实现的车牌识别系统

    基于Python实现的车牌识别系统

    本文将以基于Python的车牌识别系统实现为方向,介绍车牌识别技术的基本原理、常用算法和方法,并详细讲解如何利用Python语言实现一个完整的车牌识别系统,需要的朋友可以参考下
    2023-10-10
  • Python数据处理篇之Sympy系列(五)---解方程

    Python数据处理篇之Sympy系列(五)---解方程

    这篇文章主要介绍了Python数据处理篇之Sympy系列(五)---解方程,非常不错,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-10-10
  • Python回文字符串及回文数字判定功能示例

    Python回文字符串及回文数字判定功能示例

    这篇文章主要介绍了Python回文字符串及回文数字判定功能,结合实例形式分析了Python针对字符串的反转、判定等相关操作技巧,需要的朋友可以参考下
    2018-03-03

最新评论