六个实用Pandas数据处理代码

 更新时间:2022年05月11日 17:25:45   作者:​ 编程学习网   ​  
这篇文章主要介绍了六个实用Pandas数据处理代码,文章围绕主题相相关内容,具有一定的参考价价值,需要的小伙伴可以参考一下

前言:

今天和大家分享自己总结的6个常用的Pandas数据处理代码,对于经常处理数据的coder最好熟练掌握。

选取有空值的行

在观察数据结构时,该方法可以快速定位存在缺失值的行。

df = pd.DataFrame({'A': [0, 1, 2],
                   'B': [0, 1, None],
                   'C': [0, None, 2]})
df[df.isnull().T.any()]

输出:

  A   B   C           A   B   C
0 0 0.0 0.0         1 1 1.0 NaN
1 1 1.0 NaN   -->   2 2 NaN 2.0
2 2 NaN 2.0

快速替换列值

实际数据处理经常会根据一些限定条件来替换列中的值。

df = pd.DataFrame({'name':['Python', 'Java', 'C']})
# 第一种方式
df['name'].replace('Java', 'JavaScript', inplace=True)
# 第二种方式
df.loc[df['name'].str.contains('Java'), 'name'] = 'JavaScript'

输出:

     name                   name
0  Python          0      Python
1    Java    --->  1  JavaScript
2       C          2           C

对列进行分区

很多情况下,对于数值类型的数据,我们需要分区来计算每个区间数据出现的频率。这时用 pd.cut 就能很好的解决这一问题。

import random
age = random.sample(range(90), 20)
cut_res = pd.cut(age, bins=[0, 18, 35, 60, 90])
# cut_res type:<class 'pandas.core.arrays.categorical.Categorical'>
cut_res.value_counts()

输出:

(0, 18]     6
(18, 35]    1
(35, 60]    6
(60, 90]    7

将一列分为多列

在文本数据清洗时,一些列中存在分隔符('', ',', ':')分隔的值,我们只需将该列根据分隔符进行 split 即可。

import pandas as pd
df = pd.DataFrame({'address': ['四川省 成都市',
                               '湖北省 武汉市',
                               '浙江省 杭州市']})
res = df['address'].str.split(' ', expand=True)  
res.columns = ['province', 'city']

输出:

  province city
0 四川省    成都市
1 湖北省    武汉市
2 浙江省    杭州市

expand参数选择是否扩展为 DataFrame,False 则返回 Series

中文筛选

同样在清洗过程中,往往会出现一些不需要的中文字段,这时直接用 str.contains 筛选即可。

df = pd.DataFrame({'mobile_phone':
                   ['15928765644',
                    '15567332235',
                    '暂无']})
df[~df['mobile_phone'].str.contains('[\u4e00-\u9fa5]')]

输出:

  mobile_phone         mobile_phone
0 15928765644        0 15928765644
1 15567332235   -->  1 15567332235
2 暂无

更改列的位置

有时我们需要调整列的位置,当数据列较少时,可以用下面的方式

df = pd.DataFrame({'name': ['A', 'B', 'C'],
                   'age': [10, 20, 30],
                   'gender': [0, 1, 0]})
df = df[['name', 'gender', 'age']]

输出:

 name age gender    name gender age
0   A  10 0        0   A 0       10
1   B  20 1   -->  1   B 1       20
2   C  30 0        2   C 0       30

如果列较多,那么,一个个列举出来会比较繁琐,推荐下面插入的方式。

col = df['gender']
df.drop('gender', axis=1, inplace=True)
df.insert(1, 'gender', col)

这就是今天分享的主要内容,实践永远是最好的学习方式,记忆的也更牢固。

到此这篇关于六个实用Pandas数据处理代码的文章就介绍到这了,更多相关 Pandas数据处理 内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 在Python中使用filter去除列表中值为假及空字符串的例子

    在Python中使用filter去除列表中值为假及空字符串的例子

    今天小编就为大家分享一篇在Python中使用filter去除列表中值为假及空字符串的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-11-11
  • 详解Python中的type和object

    详解Python中的type和object

    这篇文章主要介绍了Python中type和object的相关知识,非常不错,具有一定的参考借鉴价值,需要的朋友可以参考下
    2018-08-08
  • PYTHON基础-时间日期处理小结

    PYTHON基础-时间日期处理小结

    PYTHON时间日期处理函数以datetime为中心, 起点或中转, 转化为目标对象, 涵盖了大多数业务场景中需要的日期转换处理,这里就为大家介绍一下,需要的朋友可以参考下
    2018-05-05
  • TensorFlow实现RNN循环神经网络

    TensorFlow实现RNN循环神经网络

    这篇文章主要介绍了TensorFlow实现RNN循环神经网络,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-02-02
  • Python实现Url地址截取的方法

    Python实现Url地址截取的方法

    在网络编程和数据处理过程中,解析 URL 并提取其各个部分是一个常见的需求,URL是用于定位互联网上资源的地址,本文将详细介绍如何使用 Python 编写一个函数,实现Url地址截取,需要的朋友可以参考下
    2025-03-03
  • Python 旋转打印各种矩形的方法

    Python 旋转打印各种矩形的方法

    今天小编就为大家分享一篇Python 旋转打印各种矩形的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • Python Django获取URL中的数据详解

    Python Django获取URL中的数据详解

    这篇文章主要介绍了Python Django获取URL中的数据详解,小编觉得挺不错的,这里分享给大家,供需要的朋友参考
    2021-11-11
  • Python from import导包ModuleNotFoundError No module named找不到模块问题解决

    Python from import导包ModuleNotFoundError No module named

    最近在执行python脚本时,from import的模块没有被加载进来,找不到module,这篇文章主要给大家介绍了关于Python from import导包ModuleNotFoundError No module named找不到模块问题的解决办法,需要的朋友可以参考下
    2022-08-08
  • python 点云地面点滤波-progressive TIN densification(PTD)算法介绍

    python 点云地面点滤波-progressive TIN densification(PTD)算法介绍

    关于地面点滤波的概念我们要与孤立点(outlier)滤波区分开,孤立点滤波可以理解为图像中的去噪,去除数据测量过程中受到飞鸟、多路径效应所产生的远低于/高于其他数据的点。今天通过本文给大家分享python PTD点云地面点滤波的相关知识,一起看看吧
    2021-08-08
  • python封装成exe的超详细教程

    python封装成exe的超详细教程

    相信很多人都很想把python文件封装成exe文件,下面这篇文章主要给大家介绍了关于python封装成exe的相关资料,文中通过图文介绍的非常详细,需要的朋友可以参考下
    2022-06-06

最新评论