Pytorch从0实现Transformer的实践

 更新时间:2022年05月16日 14:44:33   作者:原来如此-  
本文主要介绍了Pytorch从0实现Transformer的实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

摘要

With the continuous development of time series prediction, Transformer-like models have gradually replaced traditional models in the fields of CV and NLP by virtue of their powerful advantages. Among them, the Informer is far superior to the traditional RNN model in long-term prediction, and the Swin Transformer is significantly stronger than the traditional CNN model in image recognition. A deep grasp of Transformer has become an inevitable requirement in the field of artificial intelligence. This article will use the Pytorch framework to implement the position encoding, multi-head attention mechanism, self-mask, causal mask and other functions in Transformer, and build a Transformer network from 0.

随着时序预测的不断发展,Transformer类模型凭借强大的优势,在CV、NLP领域逐渐取代传统模型。其中Informer在长时序预测上远超传统的RNN模型,Swin Transformer在图像识别上明显强于传统的CNN模型。深层次掌握Transformer已经成为从事人工智能领域的必然要求。本文将用Pytorch框架,实现Transformer中的位置编码、多头注意力机制、自掩码、因果掩码等功能,从0搭建一个Transformer网络。

一、构造数据

1.1 句子长度

# 关于word embedding,以序列建模为例
# 输入句子有两个,第一个长度为2,第二个长度为4
src_len = torch.tensor([2, 4]).to(torch.int32)
# 目标句子有两个。第一个长度为4, 第二个长度为3
tgt_len = torch.tensor([4, 3]).to(torch.int32)
print(src_len)
print(tgt_len)

输入句子(src_len)有两个,第一个长度为2,第二个长度为4
目标句子(tgt_len)有两个。第一个长度为4, 第二个长度为3

1.2 生成句子

用随机数生成句子,用0填充空白位置,保持所有句子长度一致

src_seq = torch.cat([torch.unsqueeze(F.pad(torch.randint(1, max_num_src_words, (L, )), (0, max(src_len)-L)), 0) for L in src_len])
tgt_seq = torch.cat([torch.unsqueeze(F.pad(torch.randint(1, max_num_tgt_words, (L, )), (0, max(tgt_len)-L)), 0) for L in tgt_len])
print(src_seq)
print(tgt_seq)

src_seq为输入的两个句子,tgt_seq为输出的两个句子。
为什么句子是数字?在做中英文翻译时,每个中文或英文对应的也是一个数字,只有这样才便于处理。

1.3 生成字典

在该字典中,总共有8个字(行),每个字对应8维向量(做了简化了的)。注意在实际应用中,应当有几十万个字,每个字可能有512个维度。

# 构造word embedding
src_embedding_table = nn.Embedding(9, model_dim)
tgt_embedding_table = nn.Embedding(9, model_dim)
# 输入单词的字典
print(src_embedding_table)
# 目标单词的字典
print(tgt_embedding_table)

字典中,需要留一个维度给class token,故是9行。

1.4 得到向量化的句子

通过字典取出1.2中得到的句子

# 得到向量化的句子
src_embedding = src_embedding_table(src_seq)
tgt_embedding = tgt_embedding_table(tgt_seq)
print(src_embedding)
print(tgt_embedding)

该阶段总程序

import torch
# 句子长度
src_len = torch.tensor([2, 4]).to(torch.int32)
tgt_len = torch.tensor([4, 3]).to(torch.int32)
# 构造句子,用0填充空白处
src_seq = torch.cat([torch.unsqueeze(F.pad(torch.randint(1, 8, (L, )), (0, max(src_len)-L)), 0) for L in src_len])
tgt_seq = torch.cat([torch.unsqueeze(F.pad(torch.randint(1, 8, (L, )), (0, max(tgt_len)-L)), 0) for L in tgt_len])
# 构造字典
src_embedding_table = nn.Embedding(9, 8)
tgt_embedding_table = nn.Embedding(9, 8)
# 得到向量化的句子
src_embedding = src_embedding_table(src_seq)
tgt_embedding = tgt_embedding_table(tgt_seq)
print(src_embedding)
print(tgt_embedding)

二、位置编码

位置编码是transformer的一个重点,通过加入transformer位置编码,代替了传统RNN的时序信息,增强了模型的并发度。位置编码的公式如下:(其中pos代表行,i代表列)

2.1 计算括号内的值

# 得到分子pos的值
pos_mat = torch.arange(4).reshape((-1, 1))
# 得到分母值
i_mat = torch.pow(10000, torch.arange(0, 8, 2).reshape((1, -1))/8)
print(pos_mat)
print(i_mat)

2.2 得到位置编码

# 初始化位置编码矩阵
pe_embedding_table = torch.zeros(4, 8)
# 得到偶数行位置编码
pe_embedding_table[:, 0::2] =torch.sin(pos_mat / i_mat)
# 得到奇数行位置编码
pe_embedding_table[:, 1::2] =torch.cos(pos_mat / i_mat)
pe_embedding = nn.Embedding(4, 8)
# 设置位置编码不可更新参数
pe_embedding.weight = nn.Parameter(pe_embedding_table, requires_grad=False)
print(pe_embedding.weight)

三、多头注意力

3.1 self mask

有些位置是空白用0填充的,训练时不希望被这些位置所影响,那么就需要用到self mask。self mask的原理是令这些位置的值为无穷小,经过softmax后,这些值会变为0,不会再影响结果。

3.1.1 得到有效位置矩阵

# 得到有效位置矩阵
vaild_encoder_pos = torch.unsqueeze(torch.cat([torch.unsqueeze(F.pad(torch.ones(L), (0, max(src_len) - L)), 0)for L in src_len]), 2)
valid_encoder_pos_matrix = torch.bmm(vaild_encoder_pos, vaild_encoder_pos.transpose(1, 2))
print(valid_encoder_pos_matrix)

3.1.2 得到无效位置矩阵

invalid_encoder_pos_matrix = 1-valid_encoder_pos_matrix
mask_encoder_self_attention = invalid_encoder_pos_matrix.to(torch.bool)
print(mask_encoder_self_attention)

True代表需要对该位置mask

在这里插入图片描述

3.1.3 得到mask矩阵
用极小数填充需要被mask的位置

# 初始化mask矩阵
score = torch.randn(2, max(src_len), max(src_len))
# 用极小数填充
mask_score = score.masked_fill(mask_encoder_self_attention, -1e9)
print(mask_score)

算其softmat

mask_score_softmax = F.softmax(mask_score)
print(mask_score_softmax)

可以看到,已经达到预期效果

到此这篇关于Pytorch从0实现Transformer的实践的文章就介绍到这了,更多相关Pytorch Transformer内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python利用Turtle绘制虎年图像

    Python利用Turtle绘制虎年图像

    2022年是农历壬寅虎年,在自然界中,虎有“百兽之王”之称。本文也将利用Python中的Turtle绘制一个卡通的虎年图像,感兴趣的可以学习一下
    2022-01-01
  • python 切片和range()用法说明

    python 切片和range()用法说明

    首先需要明白,可迭代对象,按照正数索引(正序)是从0开始的,按照负数索引(逆序)是从-1开始的
    2013-03-03
  • Python实现根据指定端口探测服务器/模块部署的方法

    Python实现根据指定端口探测服务器/模块部署的方法

    这篇文章主要介绍了Python根据指定端口探测服务器/模块部署的方法,非常具有实用价值,需要的朋友可以参考下
    2014-08-08
  • Python简单实现图片转字符画的实例项目

    Python简单实现图片转字符画的实例项目

    这篇文章主要介绍了Python简单实现图片转字符画的实例项目,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-04-04
  • python如何获取当前系统的日期

    python如何获取当前系统的日期

    这篇文章主要介绍了python如何获取当前系统的日期,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-05-05
  • 深入解析pandas数据聚合和重组

    深入解析pandas数据聚合和重组

    这篇文章主要介绍了pandas数据聚合和重组,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2023-04-04
  • Python2 Selenium元素定位的实现(8种)

    Python2 Selenium元素定位的实现(8种)

    这篇文章主要介绍了Python2 Selenium元素定位的实现,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2019-02-02
  • 详解 Python 与文件对象共事的实例

    详解 Python 与文件对象共事的实例

    这篇文章主要介绍了详解 Python 与文件对象共事的实例的相关资料,希望通过本文大家能掌握这部分内容,需要的朋友可以参考下
    2017-09-09
  • Python使用LRU缓存策略进行缓存的方法步骤

    Python使用LRU缓存策略进行缓存的方法步骤

    本文主要介绍了Python使用LRU缓存策略进行缓存的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-05-05
  • 利用4行Python代码监测每一行程序的运行时间和空间消耗

    利用4行Python代码监测每一行程序的运行时间和空间消耗

    这篇文章主要介绍了如何使用4行Python代码监测每一行程序的运行时间和空间消耗,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-04-04

最新评论